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ABSTRACT
WiFi-based Human Gesture Recognition (HGR) becomes increas-
ingly promising for device-free human-computer interaction. How-
ever, existing WiFi-based approaches have not been ready for real-
world deployment due to the limited scalability, especially for un-
seen gestures. The reason behind is that when introducing unseen
gestures, prior works have to collect a large number of samples and
re-train the model. While the recent advance of few-shot learning
has brought new opportunities to solve this problem, the overhead
has not been effectively reduced. This is because these methods
still require enormous data to learn adequate prior knowledge, and
their complicated training process intensifies the regular training
cost. In this paper, we propose a WiFi-based HGR system, namely
OneFi, which can recognize unseen gestures with only one (or few)
labeled samples. OneFi fundamentally addresses the challenge of
high overhead. On the one hand, OneFi utilizes a virtual gesture
generation mechanism such that the massive efforts in prior works
can be significantly alleviated in the data collection process. On
the other hand, OneFi employs a lightweight one-shot learning
framework based on transductive fine-tuning to eliminate model
re-training. We additionally design a self-attention based backbone,
termed as WiFi Transformer, to minimize the training cost of the
proposed framework. We establish a real-world testbed using com-
modity WiFi devices and perform extensive experiments over it.
The evaluation results show that OneFi can recognize unseen ges-
tures with the accuracy of 84.2, 94.2, 95.8, and 98.8% when 1, 3,
5, 7 labeled samples are available, respectively, while the overall
training process takes less than two minutes.
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•Human-centered computing→Ubiquitous andmobile com-
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Figure 1: A typical scenario of OneFi: a user is playing VR
games using WiFi. The user registers several unseen ges-
tures by performing each gesture once. The trained model
is then fine-tuned using these one-shot data.
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1 INTRODUCTION
Human gesture recognition (HGR) is a key enabler for many
human-centered applications, such as virtual reality, smart home,
and elderly health care [55]. Traditional HGR solutions are mainly
camera-based [12, 24, 43] or device-based [2, 14, 35]. Both of them
have their respective shortcomings. Although human gestures can
be accurately identified from captured images or videos, cameras
would reveal human’s sensitive information, e.g., facial informa-
tion, raising the concern of privacy leakage. The device-based ap-
proaches, e.g. wearable sensors, are usually inconvenient for users.
It is increasingly important to develop non-intrusive HGR sys-
tems that support contactless, lightweight, and ubiquitous moni-
toring and identification of human gestures. The COVID-19 pan-
demic again emphasizes the demand for such a contactless inter-
face to help avoid infection [41]. Compared with traditional ap-
proaches, WiFi-based solutions are promising to fulfill the above
needs [19, 39, 40, 55].

Generally, a WiFi-based HGR system works in three phases, i.e.,
gesture class definition, training data collection, and recognition
model training and testing. In the first phase, users predefine sev-
eral classes of gestures to recognize (e.g., three classes for label
input: ‘push’, ‘clap’, and ‘slide’). These predefined gesture classes
are termed as base classes. In the second phase, a large number of
signal samples for each base class are collected to build a training
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set. A recognition model is then trained based on this training set
in the third phase. The classifier can provide accurate recognition
on these base gestures once well trained.

However, existing WiFi-based HGR approaches face a common
drawback. Their scalability is severely limited for unseen gesture
classes, which are the ones not included in the base dataset. This
weakness greatly impedes their real-world deployment because
predefined base gestures cannot meet the demand of recognizing
increasingly ample gestures. Their limited scalability results in two
kinds of overhead when trying to involve unseen gesture classes. (1)
Data Collection Overhead. Users have to collect sufficient signal
samples of each unseen class. Considering that collection overhead
is linear to the number of unseen classes, it will bring a massive in-
convenience to users, consuming numerous manpower and system
cost. (2) Training Overhead. The whole model has to be re-trained
using all training data once a single unseen class is introduced. Re-
training an HGR model is non-trivial because it usually involves
a recurrent structure [19, 20, 29, 55] to perceive the complex and
abstract temporal-spatial characteristics in WiFi gesture signals,
which is time-consuming due to its inherent sequential-processing
characteristic.

Hence, there is an urgent demand for one-shot unseen gesture
recognition systems. In such a system, users only need to collect
one signal sample (i.e. one shot) for any unseen class, and the model
only needs to be fine-tuned using these one-shot samples. These
characteristics would significantly increase the system scalabil-
ity and thus make fast deployment possible. In the literature, this
problem falls into the category of few-shot learning (FSL) [50].

Recent advances in mobile sensing field [7, 13] come up with
meta-learning algorithms [17] as their FSL solutions. However, they
cannot settle the above two kinds of overhead fundamentally: (1)
Data collection overhead persists. The principle of meta-learning
to recognize unseen classes is to bring adequate prior knowledge
from an enlarged base dataset, which could be prohibitively huge
to collect. Hence, instead of completely solving the data collection
overhead, meta-learning shifts this overhead from unseen gesture
collection to base dataset collection. (2) Training overhead remains.
While meta-learning architecture mitigates the training overhead
in unseen gestures recognition, it multiplies the complexity of the
regular training process. In this paper, we propose OneFi, a novel
WiFi-based one-shot HGR system to recognize unseen gestures. We
solve these two kinds of overhead at a fundamental level.

To tackle the data collection overhead, we propose a virtual ges-
ture generation approach. Instead of collecting a large base dataset
like meta-learning, we generate additional, synthetic data by signal
modeling. The key property of our method is that the virtual ges-
tures are derived from existing gestures yet nearly identical to the
real signal samples that would result from real users performing
that gesture. Consequently, instead of requiring a large base dataset
to learn sufficient prior knowledge, OneFi only requires a small base
dataset to learn a representative feature of WiFi data, alleviating
the data collection overhead.

To overcome the training overhead, we design a lightweight one-
shot learning framework based on transductive fine-tuning [37].
The proposed framework is composed of a powerful feature ex-
tractor and a simple classifier. The core principle is that once the
feature extractor is trained on a base dataset, only the classifier

needs to be fine-tuned with the collected one-shot samples, elimi-
nating the effort to re-train the whole network. Besides, to reduce
the overhead of training the feature extractor with the base dataset,
we design a self-attention [38] based backbone, called WiFi Trans-
former. Without using sequence-aligned recurrent architecture, e.g.
recurrent neural network (RNN), WiFi transformer is entirely built
on the self-attention mechanism. In terms of computational com-
plexity, self-attention layers are faster than recurrent layers because
they connect all elements in time series with a constant number of
sequentially executed operations [38].

We evaluate OneFi through extensive real-world experiments by
recruiting 10 participants that perform 40 different gestures for a
total of more than 2900 times. The results demonstrate that after
being trained for two minutes, OneFi can recognize new gestures
with an average accuracy of 84.2%, while only one training sample
of each class is provided. It also outperforms the state-of-the-art few-
shot learning solutions by 25.6% and 33.6% in recognition accuracy
in the one-shot scenario. In summary, our contributions are as
follows:

• We present a novel virtual gesture generation technique that
significantly alleviates the data collection overhead.

• We propose a lightweight one-shot learning framework us-
ing transductive fine-tuning, eliminating the overhead of
re-training the whole model.

• We design WiFi Transformer, a self-attention based back-
bone, to substitute traditional recurrent architecture. Com-
pared with 𝑂 (𝑁 ) sequential operations in RNN, WiFi Trans-
former only needs 𝑂 (1) sequential operations because it
computes all hidden representations in parallel.

• We evaluate our implementation by conducting extensive
real-world experiments to demonstrate its strong ability to
recognize unseen gestures.

By means of this work, we also hint at a new avenue of learning-
based HGR systems. Instead of trying to bypass the complexity of
RF signals, we utilize it and construct additional data, alleviating
the data collection overhead in traditional learning-only systems.
By combining the power of signal modeling and deep learning, we
establish a new state-of-the-art for one-shot gesture recognition.

2 PROBLEM STATEMENT
In this section, we formulate our target problem. We state the moti-
vation and importance to recognize unseen gestures in Section 2.1.
Then, we formally define the problem of one-shot unseen gesture
recognition in Section 2.2. In Section 2.3, we dig the reason why
existing FSL approaches cannot afford solutions for this problem.

2.1 Why do Unseen Gestures Matter?
While there are existing works focusing on adapting WiFi HGR
systems to new environments [7, 19, 54], new users [47], different
locations and different orientations [40, 55], it is still a missing piece
of the puzzle to adapt the system to unseen gestures.

However, the unseen gestures matter because it is the perfor-
mance on unseen gestures that directly determines the scalability
of a system. It impacts how well a system will keep up with ever-
evolving demands from the user and real-world application. Figure 1
shows a typical scenario. On the one hand, from a user-centered
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perspective, it is crucial to allow the user to adapt the system to their
own preference, exercising control over the recognizable gesture set
with minimized updating cost. On the other hand, the increasingly
expanded spectrum of gestures stresses the point again that it is
important to achieve efficient adaption to a large scale of unseen
gestures with a small number of samples. In view of this, we need
such a system that can adapt to unseen gestures with both the gains
of scalability and efficiency.

2.2 Problem Definition
Objective. This paper aims to design a WiFi-based gesture recog-
nition system that can recognize unseen gestures using one or few
labeled samples of these unseen gestures.
Assumption. We assume that the system has already had a la-
beled dataset (called base dataset) of a set of gesture classes (called
base classes). This base dataset only needs to be collected once to
initialize the system.
Requirement 1. We assume the base dataset does not include
any unseen gestures for testing because, in that case, the problem
becomes a common supervised learning problem, which is not the
objective of our paper.
Requirement 2. To reduce the data collection overhead for real-
world deployment, the base dataset should not include too many
(≤ 20) base classes.
Requirement 3. To further reduce the data collection overhead, we
assume that it is not necessary for the base dataset to be collected in
the same domain of the incoming unseen gestures. That is, this base
dataset can be collected at any environment, position, orientation,
and by any person.
Requirement 4. In order to minimize the training overhead, the
time for model training should be within minutes.
Summary. In brief, our ultimate goal is to use prior knowledge
embedded in a relatively small base dataset to build a model that
can be adapted to infinity possible unseen gestures, with minimized
data collection and training overhead.

2.3 Prior FSL Solutions and Limitations
Few-shot learning (FSL) is proposed to tackle the problem of adapt-
ing models to new tasks and environments when only limited data
is available [50]. As a typical FSL problem, few-shot classification
aims to learn classifiers when only a few labeled samples of each
class are given. With the WiFi HGR scenario in mind, We formulate
the problem as an 𝑁 -way-𝐾-shot classification if the training set
contains 𝐽 = 𝐾 × 𝑁 samples from 𝑁 classes, each with 𝐾 sam-
ples. Specifically, if there is only one sample for each class (i.e.
𝑁 -way-1-shot), FSL is also called one-shot learning. The training set
and test set are called support set D𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and query set D𝑞𝑢𝑒𝑟𝑦

respectively in a few-shot classification context.
Common supervised learning approaches fail to solve the FSL

problem because the scarcity of labeled data usually leads to over-
fitting. The core principle of existing FSL methods is to introduce
adequate prior knowledge into the model. For example, towards the
HGR task, while we do not have sufficient labeled data on unseen
gestures, we have sufficient labeled data for a set of base gestures.
FSL algorithms combine the available supervised information of
unseen classes with prior knowledge from base classes, which is
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Figure 2: Accuracy ofMetaSense andRF-Net to recognize un-
seen gestures. Neither of them can achieve acceptable accu-
racy with a small base dataset.

available before D𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is given, to improve the overall perfor-
mance of unseen gesture recognition.

Prior works [7, 13] adoptmeta-learning [17] as their FSL solution
to adapt their sensing system to new users, new devices, and new
environments. Known as learning-to-learn [17], meta-learning is
a promising paradigm of few-shot classification where a machine
learning model gains experience from a collection of related tasks
and uses this experience to extract transferable knowledge. A collec-
tion of meta-training tasks T = {D𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖
,D𝑞𝑢𝑒𝑟𝑦

𝑖
}𝐼
𝑖=1 is sampled

from the base classesD𝑏𝑎𝑠𝑒 to mimic the process of few-shot learn-
ing. A meta-learner A(· | 𝜙) is defined to learn a general-purpose
learning algorithm that can generalize across tasks. Then, the op-
timizing process for a given task set {D𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖
,D𝑞𝑢𝑒𝑟𝑦

𝑖
} can be

formulated as:

\∗ = A
(
D𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖
;\ | 𝜙

)
= argmin

\
L

(
D𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖
;\ | 𝜙

)
,

(1)

where L is a loss function to measure the correctness of the back-
bone classification model 𝑓\ .

In the meta-training (i.e. ‘learning how to learn’) process, the
optimization objective is to minimize the average test error of the
meta-learner A(· | 𝜙) on the sampled task distribution T :

𝜙∗ = argmin
𝜙
ED𝑞𝑢𝑒𝑟𝑦 ∈T

[
L

(
D𝑞𝑢𝑒𝑟𝑦 ;\ | 𝜙

) ]
. (2)

Then, given a new task D𝑛𝑒𝑤 = {D𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑛𝑒𝑤 ,D𝑞𝑢𝑒𝑟𝑦

𝑛𝑒𝑤 }, we use
the learned meta-knowledge A(· | 𝜙∗) to train the base model:

\∗
𝑁𝑒𝑤𝑇𝑎𝑠𝑘

= argmin
\

L
(
D𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑛𝑒𝑤 ;\ | 𝜙∗

)
. (3)

Based on the above general scheme, meta-learning methods
could be further categorized into three types: metric-based, model-
based, and optimization-based [22]. Specifically, MetaSense [13]
applies an optimization-based approach to deep mobile sensing sys-
tem by learning a decent model initialization (i.e. the parameters of
a network) so that the classifiers can be tuned for a new user/device
with a limited number of labeled samples and a small number of gra-
dient update steps. RF-Net [7] employs a metric-based solution and
focuses on adapting its RF sensing system to new environments.
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Limitations. However, these FSL approaches cannot achieve our
goal to recognize unseen gestures. This is because these sophisti-
cated meta-learning approaches do not provide much performance
improvement without collecting a huge base dataset [4]. To fur-
ther illustrate this limitation, we demonstrate the 6-way-1-shot
performance of the state-of-the-art FSL approaches, MetaSense and
RF-Net, in Figure 2. When there are 20 gesture classes in the base
dataset, the accuracy of MetaSense and RF-Net is 50.6% and 58.6%,
respectively. If there are only six gesture classes in the base dataset,
the accuracy drops to 32.3% and 46.5%, respectively. Furthermore,
as aforementioned, meta-learning intensifies the regular training
cost. We evaluate their time costs in Section 6.8. In summary, their
performance to recognize unseen gestures is unacceptable for real-
world deployment. The deficiency of existing few-shot learning
solutions asks for a new type of FSL scheme to recognize unseen
gestures.

3 SYSTEM OVERVIEW
OneFi is a one-shot recognition system for unseen gestures boosted
by virtual gesture generation and transductive fine-tuning. Figure 3
depicts the overview of our system, which contains four major
modules: data collection, data pre-processing, virtual gesture gener-
ation, and transductive fine-tuning. We release our code1 to foster
reproduction.
(1) Data Collection. To perceive human gestures with WiFi sig-
nals, we first collect the channel state information (CSI) from WiFi
signals. After taking the multipath effect into consideration, each
CSI entry [32] with carrier frequency 𝑓𝑐 could be formulated as:

𝐻 (𝑓𝑐 , 𝑡) =
(
𝐾∑
𝑘=1

𝛼𝑘 (𝑡)𝑒−𝑗2𝜋 𝑓𝑐𝜏𝑘 (𝑡 )
)
𝑒 𝑗𝜖 (𝑓𝑐 ,𝑡 ) , (4)

where K is the total number of multipath components, and 𝛼𝑘 and
𝜏𝑘 are the amplitude attenuation factor and the propagation delay
for the k-th path, respectively. 𝑒 𝑗𝜖 (𝑓𝑐 ,𝑡 ) is the phase offset caused
by timing alignment offset, sampling frequency offset and carrier
frequency offset.
(2) Pre-processing. In the pre-processing module, we compute
Doppler spectrogram of CSI data from each receiver. The concate-
nated Doppler spectrograms serve as the input of the recognition
module. The Doppler frequency shift (DFS) of a signal is the change
in the length of the signal propagation path 𝑑 (𝑡) [33]:

𝑓𝐷 (𝑡) = − 1
_

𝑑

𝑑𝑡
𝑑 (𝑡), (5)

where _ is the wavelength of transmitted signal. Then, the received
CSI data can be modeled as:

𝐻 (𝑓𝑐 , 𝑡) =
©«𝐻𝑠 (𝑓𝑐 ) +

∑
𝑘∈𝑃𝑑𝑛

𝛼𝑘 (𝑓𝑐 , 𝑡)𝑒 𝑗2𝜋
∫ 𝑡
−∞ 𝑓𝐷𝑘 (𝑢)𝑑𝑢ª®¬ 𝑒 𝑗𝜖 (𝑓𝑐 ,𝑡 ) ,

(6)
where 𝐻𝑠 (𝑓𝑐 ) represents the sum of signals collected from static
paths, whose DFS is zero, and 𝑃𝑑𝑛 is the set of dynamic paths
corresponding to the signals reflected by the moving human body.

Figure 4 shows our pre-processing workflow to extract Doppler
spectrogram from raw CSI data. We present two subcarriers among

1https://github.com/ruixiao24/onefi

all the 90 subcarriers for simplicity. We first remove the DC offset
from the CSI of each subcarrier. Then, we remove the phase offset
by calculating the conjugate multiplication of CSI readings from
another antenna on the same WiFi NIC and remove the static com-
ponents 𝐻𝑠 (𝑓𝑐 ) using a high pass filter [25]. We also apply a low
pass filter to remove the high frequency noise. After that, we apply
a principal component analysis (PCA) on CSI streams to further
denoise the signal so that only prominent dynamic components are
retained [45]. Finally, we conduct a short-time Fourier transform
to extract the Doppler spectrogram.
(3) Virtual Gesture Generation (Section 4). Motivated by data
augmentation in computer vision research, we design a data con-
struction mechanism for the WiFi HGR task to strengthen the
generalization ability of our deep model and mitigate the data col-
lection overhead. The intuition is that we can create a ‘push left’
gesture by transforming a ‘push forward’ gesture. Similar to data
augmentation, we generate additional, synthetic data, called virtual
gestures, from the base samples we have.

While data augmentation methods are popular in computer vi-
sion field, there is no existing counterpart on WiFi data. The reason
is that the data augmentation methods, such as cropping, zoom-
ing, rotation, and the like, cannot be directly applied to WiFi data
because they are inherently semantically different from vision data.

We achieve this through rigorous signal modeling. First, we re-
cover body movement velocity information from multiple Doppler
spectrograms (i.e. the output of the pre-processing module) of a
given gesture using non-linear optimization. Then, we generate
Doppler spectrogram of a transformed gesture, i.e. the virtual ges-
ture, by mapping each velocity component to the corresponding
Doppler frequency component. We can generate multiple virtual
gestures from each gesture sample in the base dataset.
(4) Transductive Fine-tuning (Section 5). Recent works propose
that the learned representation, instead of the meta-learning algo-
rithm, is responsible for the fast adaption to test time tasks [37].
To alleviate training overhead, we approach this problem with a
lightweight two-stage transductive fine-tuning solution instead of
designing another sophisticated meta-learning framework. In the
first stage, we train a feature extractor on base dataset to learn a
representation of gesture data by feeding the labeled augmented
base classes, i.e. virtual gestures, into the model. When doing one-
shot classification in the second stage, we fine-tune a classifier to
compare the cosine distance between the extracted features of the
support and query samples to get the prediction result. To further
reduce training overhead, we innovatively tailor a self-attention
model, called WiFi Transformer (Section 5.2), as the backbone of
our feature extractor to perceive the temporal information in the
Doppler spectrogram.

4 VIRTUAL GESTURE GENERATION
In this section, we detail our virtual gesture generation process.
In Section 4.1, an intuitive explanation of this process is given.
In Section 4.2, we introduce velocity distribution, a feature that
describes the bodymovement information of a gesture. We compute
velocity distribution by non-linear optimization. In Section 4.3,
we generate virtual gestures by rotating the computed velocity
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Figure 4: Pre-processing workflow of OneFi.

distribution and projecting that back to the Doppler frequency
domain.

4.1 Intuitive Explanation
Virtual gesture generation is essentially simulating Doppler spec-
trograms of the gestures that do not exist in the base dataset by
transforming existing gestures. The intuition here is that we can
create a ’push left’ gesture by rotating the ’push forward’ gesture.
To achieve this, we need to know the body movement information
of the gesture.

Multiple Doppler spectrums are required to reconstruct the body
movement information [55]. To intuitively explain this, an analogy
would be photography. When a picture is taken by a camera, the 3D
world is projected into a 2D image, with the loss of depth informa-
tion. Similarly, when the Doppler spectrum is captured by a WiFi
receiver, the velocity information is projected into a lower dimen-
sion, with the loss of some spatial information. Therefore, we need
multiple Doppler spectrums to reconstruct the body movement
information.

To formally describe the body movement information, we pro-
pose velocity distribution as the bridge between the source gesture
(e.g. real gesture) and rotated gesture (e.g. virtual gesture). By recon-
structing the velocity distribution from multiple Doppler spectrums,

we could generate virtual gestures by projecting the rotated velocity
distributions back to Doppler frequency domain.

4.2 Velocity Distribution
Definition of Velocity Distribution: Assuming a human body
is composed of infinite moving segments and the velocity of each
segment can be described by a two-dimensional random variable
𝑣 = (𝑣𝑥 , 𝑣𝑦). Then, the velocity distribution 𝑃 (𝑣, 𝑡) is the probability
distribution of body segment velocity 𝑣 at the given time point 𝑡 .

Velocity distribution is similar to a feature called body-coordinate
velocity profile (BVP) proposed in the previous work [55], which
describes the signal power distribution over different velocity com-
ponents. The velocity distribution in our paper is different from
BVP in that velocity distribution is a continuous model while BVP
offers a discrete model. Specifically, BVP discretizes the velocity
space while the velocity distribution is instead modeled on con-
tinuous velocity space. Therefore, velocity distribution provides a
better physical picture and is more intuitive and explainable.
(1) Velocity-Doppler Mapping. In order to compute velocity dis-
tribution from multiple Doppler readings, we first compute the
mapping 𝑓𝐷 between velocity 𝑣 and Doppler frequency shift. With
a fixed WiFi transmitter, the mapping 𝑓𝐷 [36] can be given by:

𝑓𝐷 (𝑣) =
|𝑣 |
𝑐
𝑓𝑐𝑐𝑜𝑠\, (7)

where 𝑐 is the speed of light in the medium, 𝑣 is the velocity of the
receiver relative to the medium, 𝑓𝑐 is the central carrier frequency,
and \ is the angle between the propagation direction of RF signal
and movement direction of the receiver.

In the HGR setting, the transmitter and receiver do not move.
Instead, it is the body movement, acting as a moving reflector, that
leads to the Doppler frequency shift. The Doppler frequency shift
with a moving reflector is:

𝑓𝐷 (𝑣) =
|𝑣 |
𝑐
𝑓𝑐 (𝑐𝑜𝑠\𝑟 + 𝑐𝑜𝑠\𝑡 ), (8)

where \𝑟 and \𝑡 are the angles between the RF signal propagation
direction and the body movement direction relative to the receiver
and the transmitter, respectively. Suppose that the relative locations
of the transmitter and the receiver with respect to the user body
are 𝑙𝑡 = (𝑥𝑡 , 𝑦𝑡 ), 𝑙𝑟 = (𝑥𝑟 , 𝑦𝑟 ). We define:

𝑎𝑥 =
𝑥𝑡

∥𝑙𝑡 ∥2
+ 𝑥𝑟

∥𝑙𝑟 ∥2
, 𝑎𝑦 =

𝑦𝑡

∥𝑙𝑡 ∥2
+ 𝑦𝑟

∥𝑙𝑟 ∥2
. (9)
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Then, the Doppler frequency shift can be written as:

𝑓𝐷 (𝑣) =
1
_
(𝑎𝑥𝑣𝑥 + 𝑎𝑦𝑣𝑦), (10)

where _ is the wavelength of transmitted WiFi signal.
(2) Velocity Distribution Computation. We now give the rela-
tionship between Doppler spectrum 𝐷 and velocity distribution
𝑃 (𝑣, 𝑡). When the positions of transmitter, receiver, and user are
known, every velocity 𝑣 maps to a Doppler frequency shift 𝑓𝐷 (𝑣)
following Eq. 10. Then, the Doppler spectrum 𝐷 at the time 𝑡 can
be formulated as:

𝐷 (𝑓 , 𝑡) =
∑

𝑓𝐷 (𝑣)=𝑓
𝑃 (𝑣, 𝑡), (11)

where 𝑓 represents different frequency components.
Since multiple receivers are used to capture WiFi signals in our

setting, we obtain multiple Doppler spectrum data𝐷𝑚
𝑟𝑒𝑎𝑙

from these
receivers where𝑚 = 1, . . . , 𝑁𝑅 and 𝑁𝑅 is the number of receivers.
To get the best approximate solution of 𝑃 (𝑣, 𝑡), we track it as a
non-linear optimization problem [55]. The optimization objective
is:

min
𝑃 (𝑣,𝑡 )

𝑄 (𝑃) s.t. 𝑃 (𝑣, 𝑡) ≥ 0, (12)

where

𝑄 (𝑃 (𝑣, 𝑡)) =
𝑁𝑅∑
𝑚=1

EMD ©«
∑

𝑓𝑚
𝐷

(𝑣)=𝑓
𝑃 (𝑣, 𝑡), 𝐷𝑚

𝑟𝑒𝑎𝑙

ª®¬ . (13)

In the above equation, EMD(·, ·) is the Earth Mover’s Distance [34]
between two distributions.

To solve this optimization problem, we first specify a discrete
grid of samples that provides local averages of 𝑃 (𝑣, 𝑡) over neigh-
borhoods of size proportional to𝑚. Thus, 𝑃 (𝑣, 𝑡) is discretized as a
𝑘-by-𝑘 matrix 𝑃𝑑 (𝑡) where 𝑘 =

𝑉𝑚
𝑚 and𝑉𝑚 is the maximum velocity

bound which is an empirical parameter. Then, the problem becomes
𝑚𝑖𝑛𝑃𝑑 (𝑡 )𝑄 (𝑃𝑑 (𝑡)) where𝑄 : R𝑘×𝑘 ↦→ R. We leverage interior-point
methods [31] to solve this optimization problem and get optimized
𝑃𝑑 (𝑡), which is a discrete approximation of velocity distribution
𝑃 (𝑣, 𝑡).

4.3 Augmented Dataset Generation
WiFi gesture data is essentially time series data collected at 𝑇 con-
secutive timestamps. We call the data at each timestamp as a time
patch. To obtain the body movement information of a given gesture,
we have to compute the velocity distributions of all time patches.
The computed velocity distribution set is denoted asP = {𝑃 (𝑡𝑖 )}𝑇𝑖=1,
where 𝑃 (𝑡𝑖 ) is the velocity distribution at the time 𝑡𝑖 . We omit the
variable 𝑣 in 𝑃 (𝑣, 𝑡) for simplicity.

After computing P, we can create virtual gestures by rotating P
around its center point.We use nearest neighbor interpolationwhen
doing rotation. The rotated velocity distribution set is denoted as
P ′ = {𝑃 ′(𝑡𝑖 )}𝑇𝑖=1, where 𝑃

′(𝑡𝑖 ) is the rotated velocity distribution at
the time 𝑡𝑖 . Then, the Doppler spectrogram of the virtual gesture is
{𝐷 ′(𝑓 , 𝑡𝑖 )}𝑇𝑖=1 where 𝐷

′(𝑓 , 𝑡𝑖 ) =
∑
𝑓𝐷 (𝑣)=𝑓 𝑃

′(𝑡𝑖 ) (following Eq. 11).
As a result, we can generate virtual gestures by transforming the
available data.

Figure 5 (a) shows the Doppler spectrogram of a virtual gesture,
‘push left’. We generate this virtual gesture by rotating the gesture
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Figure 5: Doppler spectrogram of the gesture ‘push left’. (a)
is a generated virtual gesture. (b) is a real data collected by a
WiFi receiver.

‘push forward’ counterclockwise by 45 degrees. Figure 5 (b) shows
the Doppler spectrogram of ‘push left’ collected in real experiment.
Figure 5 (a) and (b) look similar, supporting our statement that the
created data is of high quality from the training perspective.

Suppose that our base datasetD𝑏𝑎𝑠𝑒 is composed of 𝑁𝑔 different
gesture classes so thatD𝑏𝑎𝑠𝑒 = {x𝑖 , 𝑦𝑖 }, where 𝑦𝑖 ∈ 𝑌 and |𝑌 | = 𝑁𝑔 .
We now expand the base dataset by applying the generation process
on each gesture by 𝐾 times (i.e. rotating each gesture by 𝐾 different
degrees). In this way, we can generate an augmented base dataset
𝐷 ′
𝑏𝑎𝑠𝑒

= {x𝑖 , 𝑦𝑖 } where 𝑦𝑖 ∈ 𝑌𝑛𝑒𝑤 and |𝑌𝑛𝑒𝑤 | = 𝑁𝑔 × 𝐾 . In our
experiment, we expand the base dataset by 12 times and improve
the accuracy greatly.

5 FEW-SHOT RECOGNITION MECHANISM
Our transductive fine-tuning based few-shot recognition mecha-
nism can be divided into two parts: training a feature extractor using
the augmented base dataset (i.e. virtual gestures) and fine-tuning
a feature classifier using one-shot data. In this section, we first
explain this mechanism in Section 5.1. Then, we detail the design
of our novel feature extractor, i.e. WiFi Transformer, in Section 5.2.

5.1 Transductive Fine-tuning
As shown in Figure 6, we adopt a two-stage transductive fine-
tuning approach as our one-shot gesture recognition framework.
Let (x, 𝑦) denote an input gesture vector and its ground-truth
label. Then, the base dataset D𝑏𝑎𝑠𝑒 can be denoted as D𝑏𝑎𝑠𝑒 =

{(x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 )}. In the first stage, we train a powerful fea-
ture extractor using the data in D𝑏𝑎𝑠𝑒 . In the second stage, we
fine-tune a classifier based on cosine similarity to predict the label
of query samples.

In the first stage, our goal is to train a feature extractor, which can
give a high-level representation of input signal samples, using data
in D𝑏𝑎𝑠𝑒 . Instead of splitting the base dataset D𝑏𝑎𝑠𝑒 into multiple
sub-tasks like meta-learning, we train the feature extractor using
all the available data in D𝑏𝑎𝑠𝑒 as a single task. The trained feature
extractor can map the input into an embedding space and thus
provides a much meaningful cosine similarity. Our approach is to
train the feature extractor 𝑓\ together with a classifier𝐶 (·|𝑊,𝑏) on
D𝑏𝑎𝑠𝑒 as a multi-classification task. The classifier 𝐶 consists of a
weight term𝑊 and a bias term 𝑏. We design WiFi Transformer as
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Figure 6: Figure depicts our few-shot recognition mecha-
nism. In the first stage, we train a feature extractor along
with a classifier using available base classes. In the second
stage, we compare the cosine similarity of extracted features
between query sample and support samples by fine-tuning
a new classifier to predict the label of query sample.

our feature extractor (see Section 5.2). We use cross-entropy as our
loss function L. Then, the optimized parameters are:

\∗,𝑊 ∗, 𝑏∗ = argmin
\,𝑊 ,𝑏

L(D;\,𝑊 ,𝑏)

= argmin
\,𝑊 ,𝑏

∑
(x,𝑦) ∈D

− log
(
𝑊𝑇 𝑓\ (𝑦 |x) + 𝑏

)
.

(14)

In this way, we obtain a trained feature extractor 𝑓\ ∗ .
In the second stage, a new similarity-based classifier is fine-tuned.

This classifier can estimate the class label of query sample based on
the cosine similarity of the extracted features between the query
sample and the labeled support samples. We implement this by
replacing the classifier 𝐶 with a weight matrix𝑊 ∈ R𝑑×𝑐 . The
weight matrix𝑊 can be written as [𝑤1,𝑤2, . . . ,𝑤𝑐 ], where each
class has a 𝑑-dimensional weight vector. We fine-tune this weight
matrix𝑊 using support samples while keeping the entire feature
extractor 𝑓\ fixed. To classify query samples, we compute its cosine
similarity to each weight vector and obtain the similarity scores
[𝑠1, 𝑠2, . . . , 𝑠𝑐 ] for all classes, where

𝑠 𝑗 =
𝑓\ (x) ·𝑤 𝑗

∥ 𝑓\ (x)∥∥𝑤 𝑗 ∥
. (15)

Note that we only need to run the first stage once. After we
finish training our feature extractor 𝑓\ at one place, we can ship
our system to any other place and register new gestures by running
the second stage.

5.2 WiFi Transformer
In OneFi, we designWiFi Transformer, a self-attention based model,
to come up high-level representation of the Doppler spectrogram.
Doppler spectrogram is essentially a sequence data because it
represents the Doppler spectrum varying with time. We use self-
attention, a recent advance to capture long-range interactions in
sequential data [38], to serve as the primary primitive of our model.

Figure 7 illustrates the overall structure of the WiFi Transformer.
We apply a linear projection and position embedding on the input

sequence. Then, we stack alternating layers of multi-head self-
attention blocks and fully-connected feed-forward blocks sequen-
tially as the Transformer encoder to model long-term dependen-
cies among all the time patches. Each block has a residual connec-
tion [16], followed by layer normalization [1]. After processing with
the Transformer encoder, we obtain a high-level representation of
the input sequence.

We use the following naming conventions: F and C refer to the
number of frequency bins [9] and the number of input channels.
Note that every single receiver maps to one channel. T refers to
the number of timestamps.

5.2.1 Model inputs. The input of WiFi Transformer is the concate-
nated Doppler spectrogram x = (𝑥1, . . . , 𝑥𝑇 ), where 𝑥𝑖 ∈ R𝐹×𝐶 , 𝑖 =
1, . . . ,𝑇 is the received Doppler spectrum from 𝐶 receivers at each
timestamp. Note that each 𝑥𝑖 is a time patch of x. We first flat-
ten each 𝑥𝑖 and apply a linear projection with a parameter matrix
𝑊𝑙 ∈ R(𝐹 ·𝐶)×𝑑 on each time patch to get an embedding of each 𝑥𝑖
with a fixed length 𝑑 . Now the input x ∈ R𝑇×𝑑 .

A special classification token [CLS] of shape R𝑑 is attached to
the beginning of embedded time patches to represent the meaning
of the entire sequence [6]. The final hidden state (i.e. the output of
the Transformer encoder) of the [CLS] token serves as the fixed-
dimensional feature of the input sequence.

5.2.2 Multi-head self-attention block. Self-attention blocks aim to
model long-distance interactions of features received at different
time patches [38]. We apply multi-head attention with ℎ attention
heads, in which the self-attention function is calculated for ℎ times.
The multi-head attention increases the model’s ability to focus on
different positions in the sequence, and it also gives the attention
layer multiple different representation sub-spaces [38].

The multi-head mechanism splits the inputs into smaller chunks
and then computes the scaled dot-product attention over each sub-
space in parallel. Given the input x = (𝑥1, . . . , 𝑥𝑇 ), each attention
head outputs a new sequence z = (𝑧1, . . . , 𝑧𝑇 ) where 𝑧𝑖 ∈ R𝑑/ℎ .
Concatenating all the output sequence z of each head, the final
output of a multi-head self-attention block is xo = (𝑥𝑜1 , . . . , 𝑥

𝑜
𝑇
)

where 𝑥𝑜
𝑖
∈ R𝑑 .

When doing computation for each head, the output element, 𝑧𝑖 ,
is a weighted sum of the input value vector, which can be written
as:

𝑧𝑖 =

𝑛∑
𝑗=1

𝛼𝑖 𝑗 (𝑥 𝑗𝑊𝑉 ), (16)

where each weight coefficient 𝛼𝑖 𝑗 is determined by a compatibility
function that compares two input elements:

𝛼𝑖 𝑗 = softmax
( (𝑥𝑖𝑊𝑄 ) (𝑥 𝑗𝑊𝐾 )⊺√

𝑑/ℎ
)

=

exp
( (𝑥𝑖𝑊𝑄 ) (𝑥 𝑗𝑊 𝐾 )⊺√

𝑑/ℎ
)

∑𝑇
𝑘=1 exp

( (𝑥𝑖𝑊𝑄 ) (𝑥𝑘𝑊 𝐾 )⊺√
𝑑/ℎ

) . (17)

Note that𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×
𝑑
ℎ in Eq. (17) are the trainable

query matrix, key matrix, and value matrix, respectively. They are
unique across different self-attention blocks and attention heads.
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Figure 7: Figure depicts our feature extractor, WiFi Transformer. (a) shows the overview of WiFi Transformer. After applying
a linear projection and position embedding on the input time patches and then feeding them into the transformer encoder,
we take the final hidden state of the [CLS] token as the representation of the whole sequence. (b) shows components of the
transformer encoder, which stacks alternating layers of multi-head self-attention blocks and fully-connected feed-forward
blocks sequentially.

By grouping the queries (𝑥𝑖𝑊𝑄 ), keys (𝑥𝑖𝑊𝐾 ) and values (𝑥𝑖𝑊𝑉 )
in 𝑄,𝐾,𝑉 matrices, the self-attention computation can be done for
the entire input sequence in parallel:

z = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = softmax( 𝑄𝐾
𝑇√

𝑑/ℎ
)𝑉 . (18)

5.2.3 Position embedding. WiFi gesture data are basically time se-
ries data. Therefore, the position and order of time patches are the
essential components of the HGR task. Because the self-attention
operation is permutation invariant, the Transformer architecture
itself does not have any sense of the position for each patch. There-
fore, we add a learnable position embedding p = (𝑝1, . . . , 𝑝𝑇 ),
where 𝑝 𝑗 ∈ R𝑑 , to each patch embeddings to retain the absolute
position information. After the position embedding module, we
obtain the position-encoded input element representation x′ =

(𝑥 + 𝑝1, . . . , 𝑥𝑇 + 𝑝𝑇 ).

5.2.4 Model outputs. After the sequence of the Transformer en-
coder, a set of high-level features xf ∈ 𝑅𝑇×𝑑 can be inferred. Re-
member that we attach a [CLS] token at the beginning of input
sequence as the representation of the whole input sequence (see
Section 5.2.1). Now, we take the first element in output feature
sequence xf as the output of the WiFi Transformer. Note that in the
fine-tuning stage, we use the intermediate hidden state of [CLS] to-
ken as the output feature rather than the final hidden state because
the final hidden state might be overfitted on the base dataset.

6 EVALUATION
In this section, we present our real-world implementation and detail
the performance of OneFi.

TX RX 1&2RX 3&4

2m

2mSensing
Area

Figure 8: Experiment Setup

6.1 Experiment Methodology
Experiment setup: We use commercial off-the-shelf (COTS) de-
vices to build the prototype of OneFi. As shown in Figure 8, we
conduct basic experiments in a laboratory environment. The sens-
ing area is a 2m × 2m square, which is a typical setting to perform
interactive gestures for recognition and response [55]. The proto-
type consists of one transmitter and four receivers, all of which are
equipped with Intel 5300 network interface cards. We use Linux
802.11n CSI Tool [15] on Ubuntu 14.04 to extract CSI values from
WiFi packets on channel 108 at 5.54 GHz, where there is little inter-
ference from other devices. The transmitter sendsWiFi packet every
one millisecond, and the receivers working in the monitor mode
collect the CSI values. We activate one antenna of the transmitter
and all the three antennas of the receivers, and thus we obtain a
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CSI measurement of 1 × 3 × 30 = 90 subcarriers from each WiFi
packet.

Dataset:We recruit 10 participants (6 males and 4 females) to
participate in our experiments. We conduct the experiments by
adhering to the approval of our university’s Institutional Review
Board (IRB). The participants are asked to perform the gestures in
the sensing area. We totally collect more than 2900 signal samples
of 40 different gesture classes, in which six gestures (‘push and pull’,
‘sweep’, ‘slide’, ‘clap’, ‘draw zig-zag’, and ‘draw triangle’) introduced
by [55] are regarded as the default unseen gestures. Each gesture is
performed at least 15 times to ensure that we have plenty number
of signal samples for testing. In default settings, the base dataset
involves 20 gesture classes1. In the unseen dataset, the support
set and query set of the same gesture class are collected from the
same domain (e.g. same orientation and location), implying that the
location and orientation information of query sets is pre-known. To
validate the requirement 3 in Section 2.2, we perform cross-domain
experiments in Section 6.7 by varying the location and orientation
of the user in the sensing area and also by varying the environments
through changing the room furniture layout. We pre-process each
gesture sample as stated in Section 3 and further downsample the
input Doppler spectrogram by taking the mean value of every 40
time patches without overlapping.

Metric:We opt to use accuracy [55] to quantify the performance
of OneFi. It represents the probability that an unseen signal sample
can be correctly recognized, which can be calculated by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑐𝑜𝑟

𝑁𝑎𝑙𝑙
, (19)

where 𝑁𝑐𝑜𝑟 is the number of correctly recognized signal samples
and 𝑁𝑎𝑙𝑙 is the number of all testing signal samples. The higher the
accuracy is, the better OneFi performs.

6.2 Overall Accuracy
To show the superiority of OneFi, we compare the accuracy of
OneFi with that of the state-of-the-art few-shot learning works,
MetaSense [13] and RF-Net [7]. MetaSense [13] employs MAML [8]
as its meta-learning framework. Meanwhile, RF-Net [7] adopts a
metric-based meta-learning framework, and it also involves an in-
novative dual-path base network specifically tailored for RF signals
(including WiFi signals).

We calculate the accuracy to recognize six unseen gestures in
the one-, three-, five-, and seven-shot settings and show the results
in Figure 9. We can observe that in the one-, three, five-, and seven-
shot settings, the recognition accuracy of MetaSense is 50.6%, 62.5%,
70.8%, and 73.0% respectively, and the recognition accuracy of RF-
Net is 58.6%, 62.1%, 70.0%, and 78.0% respectively. Meanwhile, in
these settings, the accuracy of OneFi is 84.2%, 94.2%, 95.8%, and
98.8%, respectively. Apparently, no matter in the one-, three-, five-,
or seven-shot setting, our system outperforms both MetaSense and
RF-Net. The reason is that apart from OneFi’s specially-designed
one-shot learning framework and WiFi Transformer backbone, the
proposed virtual gesture generation technique improves the overall
performance, especially when the base dataset is small. Besides,
OneFi uses a higher packet rate than RF-Net and then performs
downsampling on CSI data, which smooths out the noise brought by
the hardware. Note that the one-shot performance of OneFi is even

better than the seven-shot performance of MetaSense and RF-Net,
demonstrating that our system has significant scalability for unseen
gestures. Such outstanding scalability would greatly promote the
performance of WiFi-based HGR in real-world deployment.

6.3 Effect of Virtual Gestures
In OneFi, we generate virtual gestures to enrich the base dataset
while mitigating the data collection overhead. The introduction of
virtual gestures is indeed a kind of data augmentation. In this part,
we demonstrate the effectiveness of virtual gesture generation by
comparing with two baselines: 1) without using data augmenta-
tion; 2) a naive augmentation: adding Gaussian noise on signals to
augment data [18]. In the experiment, we calculate the accuracy
while varying the number of gesture classes (from two to 20) in the
base dataset for training. Theoretically, a smaller number of base
classes means a harder problem, leading to lower accuracy. The
experiment results for six unseen gesture recognition are shown
in Figure 10. We can find that the naive augmentation does not
improve accuracy remarkably compared with no augmentation.
Meanwhile, the curve of virtual gesture generation is on top of the
curves of the two baselines. When there are nine base classes, the
accuracy of our approach is higher than 85%. Hence, while the effect
of adding Gaussian noise is limited, virtual gesture generation is
effective in improving recognition accuracy without collecting a
huge base dataset.

6.4 Effect of Proposed Backbone
The backbone plays an important role in a learning framework. In
OneFi, we design WiFi Transformer as our backbone of the feature
extractor. To show the superiority of the WiFi Transformer, we
compare its performance with two baselines: LSTM (long short-
term memory) and LSTM+CNN (convolutional neural network).
We choose these baselines because CNN and LSTM are the most
popular and explainable backbones in existing WiFi sensing re-
searches [19, 20, 29, 55]. Specifically, we implement a two-layer
LSTM with a hidden size of 128 as our LSTM model. And we add an
additional one-dimensional convolutional layer with a kernel size
of 3 upon that as our CNN+LSTM model. The comparison results
are displayed in Figure 11. CNN+LSTM gets a low accuracy because
the coupling of these two structures makes the model hard to con-
verge. Meanwhile, we can easily observe that WiFi Transformer
in our system outperforms LSTM and CNN+LSTM in all settings.
Thus, the designed backbone, WiFi Transformer, is reasonable and
effective.

6.5 Impact of Number of Unseen Gestures
For scalability in real-world deployment, it is important for the HGR
system to perform still well when the number of gesture classes
becomes larger. While existing works usually consider only 6-8
gesture classes [39, 40, 52], we want to explore the impact of the
increasing number of unseen gesture classes on our system.

We vary the number of unseen gesture classes 𝑁𝑢 from six to 20.
The results are shown in Figure 12. In the one-shot setting, the accu-
racy is higher than 80% when 𝑁𝑢 ≤ 8. However, one-shot accuracy
decreases with the increasing 𝑁𝑢 . When 𝑁𝑢 = 20, the accuracy is
only 55%. This is because the recognition difficulty increases when
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Figure 9: Overall accuracy ofOneFi, com-
paring with MetaSense and RF-Net.
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Figure 10: Effect of virtual gestures.
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bone.
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Figure 14: Recognition accuracy on un-
seen gestures in four different environ-
ments.

𝑁𝑢 becomes larger. Few-shot recognition onWiFi gesture data is an
inherently difficult task. Even the same gesture performed by the
same person would be quite different in terms of movement range
and speed. As 𝑁𝑢 increases, one solution to counter the accuracy
decrease is to add more shots. We can see that with three/five/seven
shots from each class, we can achieve an accuracy higher than 70%
even when 𝑁𝑢 reaches 20, while the accuracy of ‘random guess’ is
only 5%. Therefore, OneFi can recognize a large number of unseen
gestures with high accuracy.

6.6 Impact of Number of Receivers
In our default setting, four receivers are utilized to collect the sam-
ples of unseen gestures. Considering the real-world deployment,
the impact of the number of receivers is worth exploring because
fewer receivers mean easier implementation in a real environment.
Specifically, we vary the number of the receivers from one to four
and show the accuracy in Figure 13. We can observe that the recog-
nition accuracy does not decrease remarkably with the decrease
of the number of receivers, no matter in the one-, three, five, or
seven-shot settings. Thus, using one receiver can also achieve com-
parable accuracy to that using four receivers. This is because the
accuracy with one receiver is already high, which almost saturates
the performance limit of our framework. In this circumstance, the
room for improvement is marginal. Therefore, the performance im-
provement would be trivial if we increase the number of receivers.
It is worth mentioning that multiple receivers are still necessary
to collect training data because we require the data of multiple
receivers to generate virtual gestures. Once the learning model is
trained, only one receiver is required for unseen sample recogni-
tion. Thus, OneFi is user-friendly and can be easily deployed in
real-world environments.

6.7 Cross-Domain Performance
To validate requirement 3 in Section 2.2, we perform cross-domain
experiments. In practice, WiFi signals are sensitive to the varia-
tion of the domain, including environment, person, orientation,
and location. To suppress the impacts of domain variations, we
take three countermeasures: 1) Extracting environment-resistant
Doppler spectrogram as the input feature of the learning model,
reducing the impacts of the environment. 2) Generating massive
virtual gestures to reduce the gap between different orientation do-
mains. 3) Leveraging our few-shot learning framework to fine-tune
the deep model so that the recognition model can learn the trans-
ferable knowledge from the original location/person domain to the
target location/person domain. To validate the effectiveness of our
countermeasures, we conduct the following experiments, as shown
in Figure 15. We train the feature extractor with the base dataset.
Then, we test the unseen gesture recognition accuracy when the
location, orientation, user, and environment are different from the
base dataset. Note that it is possible to achieve higher accuracy in
the unseen domain than in the seen domain because the one-shot
recognition accuracy depends on the intra-class similarity due to its
inherent similarity comparison nature. For a given gesture class, its
support set and query set may have higher similarity in the unseen
domain than those in seen domain. In this case, the unseen domain
would have even higher accuracy than seen domain.
Cross-environment evaluation.We test the accuracy when un-
seen gesture classes and base classes are performed in different
environments. As shown in Figure 15, we do this experiment in
three different environments. The base dataset is collected in ‘E1’.
The accuracy in the one-, three, five-, and the seven-shot setting is
shown in Figure 14. When tested in other environments, we can
observed that the accuracy on unseen gestures is higher than 78% in
all environments. In the three-, five, and seven-shot settings, most
accuracy is higher than 90%. These results indicate that our system
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Figure 15: Figure depicts our cross-domain experiment design. We vary multiple parameters to comprehensively investigate
the cross-domain behavior of OneFi.

has outstanding cross-environment capability, which would greatly
facilitate real-world deployment.
Cross-person evaluation. To evaluate the cross-person perfor-
mance of OneFi, we conduct a cross-person experiment with ten
people. Specifically, the base dataset is collected from ‘P1’. Then,
we test OneFi’s performance on unseen gestures performed by ten
people (from ‘P1’ to ‘P10’). The accuracy in the one- to seven-shot
settings is shown in Figure 16. We can find that the recognition
accuracy becomes higher with the increase of shot number. In the
two-shot setting, the accuracy on most people is higher than 75%.
In the three-shot setting, the accuracy on all people excluding ‘P4’,
‘P8’, ‘P9’ is larger than 80%. When the number of shots increases
to six, the accuracy on nine people is higher than 84%. Meanwhile,
it is worth noting that the mean accuracy on ten people in the
one-, three-, five-, and seven-shot settings is 73.3%, 85.8%, 89.8%,
and 91.3%, respectively. Apparently, OneFi performs well on cross-
person unseen gesture recognition.
Cross-orientation evaluation. This experiment tests the accu-
racy when unseen gesture classes and base classes are performed
towards different orientations. As shown in Figure 15, we collect
samples of six orientations. The base dataset is collected facing
‘O1’. The angle between ‘O1’ and other five orientations are 𝜋

4 ,
−𝜋4 ,

𝜋
2 , −

𝜋
2 , and 𝜋 , labeled as ‘O2’, ‘O3’, ‘O4’, ‘O5’, and ‘O6’, re-

spectively. The recognition accuracy is shown in Figure 17. We can
find that most of the accuracy is higher than 80% in the one-shot
setting. In the three-, five, and seven-shot settings, almost all the
accuracy is larger than 85%, and some of the accuracy is even higher
than 95%. Meanwhile, the accuracy at ‘O6’ is relatively low. This
is because the reflected signals are not strong enough when the
person is performing gestures with his back towards the transmit-
ter. Nevertheless, the accuracy at ‘O6’ is around 80% in the three-,
five-, and seven-shot settings. Hence, our system shows excellent
cross-orientation performance.
Cross-location evaluation.We evaluate OneFi when unseen ges-
ture classes and base classes are performed at different locations.
The base dataset is collected at ‘L1’, and we collect samples of un-
seen gestures at six different locations (‘L1’ to ‘L6’), respectively.
The results shown in Figure 18 indicate that the recognition accu-
racy is larger than 70% at ‘L2’, ‘L3’, ‘L4’ and ‘L5’ in the one-shot
setting, which demonstrates the decent cross-location ability of
OneFi. In the three-, five, and seven-shot settings, the accuracy at
all locations excluding ‘L6’ is higher than 80%. The accuracy at ‘L6’

is relatively low because ‘L6’ is far from ‘L1’, leading to a weak
received signal. However, the accuracy at ‘L6’ reaches 70% when
we fine-tune the classifier with more than three shots. Thus, the
cross-location performance of OneFi is also acceptable.

6.8 Training Overhead
One of the goals in our paper is to reduce training overhead. As
aforementioned, our system requires no re-training for unseen
gestures. In this experiment, we investigate how much time is
required for our system to converge to its best performance (with
respect to validation) on the base dataset with a single NVIDIA
RTX2080 Ti GPU.

Figure 19 (a) plots the accuracy changes for MetaSense, RF-Net,
and OneFi as training proceeds. Training OneFi for eight seconds
gives an accuracy higher than training MetaSense and RF-Net for
2000 seconds, showing OneFi entails significantly less training over-
head. To investigate whether WiFi Transformer would further re-
lieve training overhead, we do this experiment again, varying the
backbone ofOneFi. Figure 19 (b) showsWiFi Transformer converges
within two minutes, minimizing the training overhead.

The time cost of the recognition process is directly related to
the real-time performance of OneFi. Thus, we measure the latency
of our system. It takes our model 7.49 milliseconds to recognize
one gesture sample, which demonstrates that our system is not
only high in accuracy but also efficient and lightweight in terms of
resource consumption.

7 DISCUSSION
Sensing Distance. Even though Section 6.7 shows that OneFi can
operate in cross-domain settings, the result in Figure 18 shows a
drop in accuracy when the performer is far away from the WiFi
APs. This is because OneFi only leverages non-line-of-sight signals,
which are reflected off the human body and hence carrying the
body movement information. This signal not only has a longer
propagation distance compared with line-of-sight signals but also
suffers from attenuation after being reflected from the human body.
To get high accuracy in long-distance scenarios, extra efforts are re-
quired, e.g., increasing signal strength or the sensitivity of receivers.
Another way to improve the accuracy in long-distance scenarios is
to enhance our signal propagation model by taking path loss into
account.
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Figure 16: Recognition accuracy on un-
seen gestures performed by different
people.
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Figure 17: Recognition accuracy on un-
seen gestures of different orientations.
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Figure 18: Recognition accuracy on un-
seen gestures at different different loca-
tions.
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Figure 19: Accuracy changes over training time. (a) shows
results of different few-shot learning frameworks. (b) shows
results of OneFi with different backbones.

Potential extensions of virtual gesture generation.OneFi lever-
ages rotation to generate virtual gestures because different orienta-
tions of the same gesture can be interpreted as new gestures. To
further increase the difference between virtual gestures and base
gestures, we can extend our virtual gesture generation method. One
potential way of extending OneFi is to synthesize two gestures. For
example, we may create a ‘clap’ gesture by combining a ‘sweep left’
gesture and a ‘sweep right’ gesture. Another potential extension
is to substitute the rotation, a two-dimensional operation, with
a three-dimensional transformation. This will further enrich the
diversity of the base dataset.

8 RELATEDWORK
This work is mainly related to two techniques, i.e., WiFi-based
gesture recognition technique and few-shot learning techniques.
WiFi-based gesture recognition:The development ofWiFi-based
gesture recognition techniques [5, 7, 10, 19, 27, 28, 39, 40, 46, 48,
49, 51, 53–55] can be divided into two phases. In the first phase,
researchers aim to model WiFi signal propagation and achieve accu-
rate recognition. For example,Wang et al. [48] first buildWiFi signal
profiles for activities. They accurately identify in-place activity and
walking by comparing signal profiles. Zhang et al. [53] analyze
the sensing feasibility of activity recognition by WiFi signals theo-
retically and propose a Fresnel zone model to achieve decimeter-
scale activity recognition. In the second phase, researchers attempt
to improve systems’ adaption ability to domain variations (in-
cluding environment, person, location, and orientation). For in-
stance, Jiang et al. [19] leverage adversarial networks to extract
environment/subject-independent features of human activities. Zheng
et al. [55] define a gesture-specific feature, body-velocity profile, to
achieve cross-environment, -person, -orientation, and -position ges-
ture recognition. Aditya et al. [40] propose WiAG, a cross-position
and cross-orientation gesture recognition system. However, these

systems still face data collection overhead and training overhead
to recognize unseen gestures. In this paper, we solve this problem
with virtual gesture generation and a few-shot learning framework.
Few-shot learning techniques: Few-shot learning [3, 7, 11, 13,
21, 23, 26, 30, 42, 44, 47] is proposed to reduce the manpower in-
vested for training data collection. Due to its superiority on unseen
class training, it has been applied to many learning-based fields,
such as visual data classification, acoustic signal recognition, and
mobile computing. For example, Koch et al. [21] design a unique
structure, called siamese network, to rank similarity, making one-
shot image recognition possible. Wang et al. [47] achieve one-shot
gesture recognition for different users by adopting a dynamic speed
warping algorithm. Gong et al. [13] employ a few-shot learning
framework to enable a deep mobile sensing system to adapt to
new users and new devices rapidly. In [7], Ding et al. leverage the
meta-learning technique to achieve one-shot cross-environment
activity recognition with RF signals. To our best knowledge, we
are the first to achieve one-shot unseen gesture recognition using
COTS WiFi infrastructures.

9 CONCLUSION
In this paper, we propose OneFi, a one-shot HGR system to recog-
nize unseen gestures using COTSWiFi. Specifically, we overcome the
shortcomings of the traditional learning-only approaches by gener-
ating virtual gestures via signal modeling to considerably enrich the
base dataset and mitigate extra effort in data collection. Besides, we
propose a lightweight few-shot learning framework using transduc-
tive fine-tuning, along with a novel backbone, WiFi Transformer, to
reduce training overhead to a great extent. Extensive experimental
results show that OneFi achieves a high recognition accuracy in
various settings. Combining the power of signal modeling and deep
learning to complement each other, OneFi is envisioned as a promis-
ing step towards practical wireless human-computer interface.
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