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Abstract—In recent years, WiFi-based gesture recognition
(WGR) has gained popularity due to its privacy-preserving
nature and the wide availability of WiFi infrastructure. However,
existing WGR systems suffer from scalability issues, i.e., requir-
ing extensive data collection and re-training for each new gesture
class. To address these limitations, we propose OneSense, a one-
shot WiFi-based gesture recognition system that can efficiently
and easily adapt to new gesture classes. Specifically, we first
propose a data enrichment approach based on the law of
signal propagation in physical world to generate virtual gestures,
enhancing the diversity of the training set without extra overhead
of real sample collection. Then, we devise an aug-meta learning
(AML) framework to enable efficient and scalable few-short
learning. This framework leverages two pre-training stages (i.e.,
aug-training and meta-training) to improve the model’s feature
extraction and generalization abilities, and ultimately achieves
accurate one-shot gesture recognition through fine-tuning. Ex-
perimental results demonstrate that OneSense achieves 93% one-
shot gesture recognition accuracy, which outperforms the state-
of-the-art approaches. Moreover, it maintains high recognition
accuracy when facing new environments, user locations, and
user orientations. Furthermore, the proposed AML framework
reduces 86%+ pre-training latency compared to conventional
meta-learning method.

Index Terms—WiFi Sensing, Gesture Recognition, Few-shot
Learning

I. INTRODUCTION

In the past decade, WiFi-based gesture recognition (WGR)
has attracted increasing attention owing to its multiple irre-
sistible properties, such as visual privacy preserving, robust-
ness to occlusion, and wide deployment of WiFi facilities [1]–
[4]. Existing WGR systems typically rely on learning models
to associate channel state information (CSI) with gesture
classes. They demonstrate high gesture recognition accuracy,
yet, also have two major flaws on the system scalability, which
hinder their landings in real world.

On the one hand, to achieve accurate gesture prediction,
the learning model generally needs to derive knowledge from
a dataset containing the CSI samples of every gesture class.
As each class should provide dozens or even hundreds of
samples, the data collection is significantly time-consuming
and resource-intensive. On the other hand, traditional models
circumscribe the gesture classes at the beginning of the system
implementation. If one wants the system to recognize new
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gestures, the system necessitates a re-training for the whole
model. This introduces lots of extra computational overhead.
As the demand for gesture categories continues to increase [5],
the above flaws make existing systems struggle to fulfill
flexible gesture recognition tasks.

Recently, few-shot learning techniques show potential in ad-
dressing the drawbacks mentioned above. Previous works [6]–
[8] in computer vision (CV) field have demonstrated the
feasibility of few-shot image recognition via meta-learning.
The key idea behind meta-learning is to build a general model
in advance from a large number of similar few-shot tasks.
This model can then quickly adapt to new tasks with only a
limited number of labeled samples. However, applying meta-
learning to WiFi-based gesture recognition is non-trivial due
to the following challenges. (1) The training of the general
model requires a diverse dataset that contains a large quantity
of gesture classes (termed as seen classes). The developer has
to collect massive samples to form such a diverse dataset.
This consumes a lot of time and manpower. (2) The meta-
learning mechanism would construct copious few-shot tasks
for pre-training, which usually demands far more computa-
tional and time overhead than normal supervised learning. (3)
Conventional meta-learning does not support varying numbers
of gesture classes. For example, once the general model was
well-trained, it cannot be used to recognize one more new
gesture class (termed as unseen class), unless re-training the
entire general model. This hampers the system’s capability in
handling evolving sensing requirements.

By addressing these challenges, we propose a novel one-
shot WiFi-based gesture recognition system named OneSense.
It frees up lots of manpower, time, as well as computational
overhead for both developers and users. The developer first
needs to collect a small number of real samples, based on
which a large number of virtual samples are generated. Comb-
ing the real and virtual samples, the developer can quickly train
a general model. By fine-tuning the general model with only
one real sample for each class, the user can achieve accurate
one-shot gesture recognition.

Specifically, we first design a data enrichment algorithm to
increase the diversity of the training dataset, eliminating the
reliance on extensive real-world data collection. In particular,
developers only need to collect a few real-world samples
for several gesture classes, and leverage the data enrichment
algorithm to generate abundant new gestures/samples (namely



virtual gestures/samples) based on the law of signal propaga-
tion in physical world. This algorithm helps construct a diverse
dataset for training the general model with much less time and
manpower than real collection.

Then, we devise a novel one-shot learning framework called
aug-meta learning (AML), which incorporates the advantages
of both normal supervised learning and meta-learning. The
framework consists of two pre-training stages, i.e. aug-training
and meta-training. In the aug-training stage, the model un-
dergoes normal supervised learning using the virtual samples,
gaining the ability of deep feature extraction. In the meta-
training stage, the AML framework will perform classical
meta-learning to adapt to few-shot scenarios, and generate
a general model. The combination of these two pre-training
stages accelerates the convergence of the model, greatly re-
ducing the computational and time overhead.

Finally, the system is customized to suit different gesture
recognition tasks by simply fine-tuning the pre-trained general
model with only one sample for each class. The number of
gesture classes is tunable in this stage, which means that, once
pre-trained, OneSense is capable of meeting evolving sensing
requirements with little overhead.

We build a prototype of OneSense and conduct extensive
experiments to evaluate its performance in four real envi-
ronments. The results indicate that OneSense can achieve a
high one-shot recognition accuracy of 93%, outperforming
existing WiFi-based few-shot gesture recognition approaches.
Robustness study demonstrates that the recognition perfor-
mance of OneSense remains satisfactory when facing varied
environments, user locations, and user orientations. Moreover,
the proposed AML framework can reduce over 86% pre-
training time cost compared to conventional meta-learning.

The contributions of this paper are summarized as follows:

• We propose a novel scalable one-shot WiFi-based gesture
recognition system, namely OneSense. It only requires the
user to collect one real sample for each new class.

• We design a data enrichment algorithm based on signal
propagation law to expand the training dataset, which
significantly reduces the manpower and time overhead
of real data collection.

• We propose AML framework to enable efficient and
scalable few-shot learning. This framework is promising
to be applied to many sensing tasks or even fields like
CV.

• We conduct extensive experiments in real environments.
The results demonstrate that OneSense can achieve 93%
one-shot gesture recognition accuracy. Meanwhile, One-
Sense is robust against environment, user location, and
user orientation variations.

II. PRIMER

We achieve few-shot gesture recognition using WiFi CSI.
This section first presents some preliminary knowledge on
WiFi CSI and then introduces the basics of few-shot learning.

A. WiFi CSI

Current WiFi-based sensing techniques dominantly perform
sensing tasks by extracting CSI from WiFi packets [9]. WiFi
CSI is the channel frequency response of each OFDM sub-
carrier, describing how WiFi signals propagate from the trans-
mitter to the receiver after experiencing amplitude attenuation,
phase shift, and adding noise at physical layer [10]. Each CSI
entry with carrier frequency fc at time t can be formulated as:

H(fc, t) =

K∑
k=1

αk(t)e
−j2πfcτk(t) +N (1)

where K is the number of multipaths. αk and τk are the
amplitude attenuation factor and propagation delay for the k-th
path, respectively. N is the additive white Gaussian noise.

These K paths can be divided into static ones and dynamic
ones. The static paths include the direct propagation from
the transmitter to the receiver and the reflection on static
objects in the environment. Dynamic paths refer to the paths
reflected by the moving object. Correspondingly, each CSI
entry can also be divided into static component Hs(fc) and
dynamic component Hd(fc, t). Taking into consideration the
extra phase offsets caused by the hardware and software errors,
the estimated raw CSI entry can be formulated as:

H(fc, t) = (Hs(fc) +Hd(fc, t))e
jθ(fc,t) +N (2)

where ejθ(fc,t) is the random extra phase offset including
timing alignment offset, sampling frequency offset, as well
as carrier frequency offset.

In the scenario of human gesture recognition, the moving
human body would induce variations in the amplitude and
phase of the CSI multipath channels, especially the dynamic
ones. Therefore, we can extract gesture-relevant dynamic
features from CSI to achieve WiFi-based gesture recognition.

B. Few-shot Learning

Generally, WiFi-based gesture recognition systems leverage
supervised learning to map the features extracted from CSI
into gesture classes. This requires the user to collect a large
number of samples for each class, consuming lots of human
efforts. To solve this problem, we adopt few-shot learning
(FSL) techniques to reduce the data collection overhead. In
FSL like meta-learning [11], the learning problem is typically
divided into a series of N -way K-shot tasks {Ti}Ii=1, where
N is the number of classes, K represents the number of
samples available to learn from for each class, and I denotes
the total number of tasks in this series. Each task Ti consists
of a support set Si and a query set Qi. The support set Si
provides a limited number of labeled samples to train the
model, while the query set Qi is used to evaluate the learning
model’s performance after training on Si. The support set Si is
composed of N ×K samples, where N classes are randomly
selected from the dataset, and K samples are extracted for each
selected class. The query set Qi also contains samples from
the same N classes as in Si, but with different instances. By
organizing the learning process into these tasks and training



Fig. 1: Architecture of OneSense.

the model on different combinations of classes and samples,
few-shot learning enables the model to generalize and make
accurate predictions on new tasks with limited labeled data.

In this work, we aim at minimizing the data collection
overhead, i.e., achieving one-shot gesture recognition, with
meta-learning technique. To further reduce the computational
overhead induced by conventional meta-learning method, we
propose a novel few-shot learning framework named AML.

III. SYSTEM OVERVIEW

We propose a one-shot WiFi-based gesture recognition sys-
tem, namely OneSense. As shown in Fig. 1, OneSense mainly
contains four modules: data collection, data pre-processing,
data enrichment, and gesture recognition. The use of One-
Sense can be divided into two phases: bootstrapping phase
(developer edge) and deployment phase (user edge). Our key
idea is that, the developers pre-train a recognition model based
on the pre-collected samples (base gestures) as well as the
virtual ones to bootstrap the system. Then, on the user edge,
only a few labeled samples are required to fine-tune the pre-
trained model for deployment on the customized task (unseen
gestures).
Bootstrapping phase. In this phase, OneSense aims to pre-
train a feature extractor that forms the foundation for one-
shot recognition. Specifically, OneSense first collects a batch
of CSI samples of seen gestures as base dataset in the
data collection module. Then, the data pre-processing module
removes gesture-irrelevant components like noise from raw
CSI measurements. With the clean CSI, OneSense extracts
Doppler frequency shift (DFS) as environment-independent
gesture features. Thereafter, in the data enrichment module,
OneSense leverages a virtual gesture construction algorithm
to generate a large quantity of samples of virtual gestures
based on the base dataset. Finally, in the gesture recognition
module, OneSense trains a feature extractor using both the
virtual dataset and base dataset via AML.
Deployment phase. OneSense obtains an accurate classifier
for unseen gestures in this phase. To be specific, OneSense
first gets only one sample for each unseen gesture in the
data collection module. Then, the collected samples undergo
the same pre-processing as the bootstrapping phase. After
that, OneSense utilizes the feature extractor pre-trained in the
bootstrapping phase, and attaches a classifier after it. OneSense
fine-tunes the classifier using the pre-processed samples of

(a) Raw CSI. (b) Conjugate multiplication.

(c) Filtering. (d) PCA.

Fig. 2: Effectiveness of signal pre-processing.

unseen gestures, obtaining a model with accurate one-shot
recognition ability for unseen gestures.

IV. DATA PRE-PROCESSING

This section describes how OneSense removes gesture-
irrelevant components from raw CSI measurements and ex-
tracts environment-independent DFS as gesture features. For
clarity, we take only one subcarrier from each antenna as an
example in Fig. 2.

A. Data Cleaning

As mentioned in Sec. II-A, raw CSI measurements
(Fig. 2(a)) contain many components irrelevant to the gesture
information, such as phase offset, static components, and
noise. These components could degrade the gesture recogni-
tion performance. To suppress their impacts, we apply a series
of signal processing techniques to clean the raw CSI, including
conjugate multiplication [12], frequency-based filtering, and
principal component analysis (PCA) [13].
Conjugate multiplication. The slight out-of-sync between the
transmitter and receiver would introduce time-varied random
phase offset ejθ(fc,t) (Eq. 2). Fortunately, since the antennas
on the same receiver share the same RF oscillator, their phase
offsets can be considered consistent. Based on this charac-
teristic, we can eliminate such phase offset by performing
conjugate multiplication between the CSI of two antennas on
the same receiver, as shown in Fig. 2(b).
Frequency-based filtering. In addition to the phase offset,
the received CSI also contains static components and white
Gaussian noise. To eliminate their influences, we perform
high-pass filtering (2Hz cut-off frequency) to remove low-
frequency components caused by static paths on one hand,
and then conduct low-pass filtering (60Hz cut-off frequency) to
erase high-frequency noise on the other. As shown in Fig. 2(c),
the filtered CSI traces become more smooth.
PCA. Ultimately, we perform PCA on the filtered CSI and
extract the first principal component. This not only makes
the gesture-related features in the CSI more prominent, but
also removes some remaining noise. It can be observed from



Fig. 3: WiFi signal propagation model in physical world.

Fig. 2(d) that the CSI after PCA is clean. The envelope, i.e., the
variation trend, of the CSI profile is clearer, allowing OneSense
to extract representative and high-quality gesture features.

B. DFS Extraction

Due to the multipath effect, the CSI measurements are
related to not only the dynamics of the human body, but also
the surrounding environments. In this case, The CSI profiles
of the same gesture collected in different environments may
differ. Further, the gesture recognition model built in one
environment could perform inadequately in another. To address
this issue, we opt to extract DFS from CSI as gesture features.
Since DFS is environment-independent, the model built upon
DFS can perform well across environments. In the following,
we will show how to extract DFS from WiFi CSI according
to the Doppler effect [14].

A scenario of WiFi-based human gesture recognition is
shown in Fig. 3. If we regard the target user O as a point, due
to Doppler Effect, the motion of O will lead to a frequency
change between the transmitter Tx and the receiver Rx. Such
a variation in frequency is called DFS, which can be calculated
by:

fD = −f0
v

c
(cos(θ − αR) + cos(θ − αT )) (3)

where f0 is the frequency of the WiFi signal transmitted by
Tx, v is the speed of the target user, c is the speed of light,
αT is the angle of departure (AoD), and αR is the angle of
arrival (AoA).

However, in reality, a human body cannot be simply seen as
a point, especially in near-field scenarios where the distance
between the human and the transmitter/receiver is small.
In fact, different body parts would indice different velocity
components, and consequently, different DFS. To deal with
this problem, we introduce Doppler spectrogram to represent
the intensity of DFS components over time, which covers the
whole body. Doppler spectrogram can be estimated from CSI
measurements by time-frequency analysis techniques such as
short-time Fourier transform (STFT). Hence, after data clean-
ing, we first employ STFT to obtain the Doppler spectrogram
from CSI, and then retain the part of the spectrogram that
mostly reflects the dynamics of the human body as the input
of the subsequent learning model.

Specifically, let x(t) be the time-series CSI data and w(t)
be a window function in STFT. The Doppler spectrogram
at a particular frequency f and time t can be obtained by

calculating the square of the STFT magnitude, which is given
by:

S(f, t) =

∣∣∣∣ ∫ ∞

−∞
x(τ)w(t− τ)e−2πifτdτ

∣∣∣∣2 (4)

After that, we retain the part that best represents the Doppler
shift in the spectrogram, i.e., the part within the frequency
range of [-60Hz, 60Hz] [5]. The ultimate Doppler spectrogram,
as shown in Fig. 4(a) and (b), provides valuable insights into
the movements of the human body.

V. DATA ENRICHMENT

As mentioned in Sec. II-B, users need to prepare a dataset
with plentiful gesture classes to pre-train the learning model,
when adopting meta-learning for one-shot recognition. Ap-
parently, collecting real gesture samples in physical world is
laborious. To tackle this problem, Xiao et al. [5] propose
to generate virtual gestures by simulating the rotation of
real gestures in a two-dimensional plane, i.e., changing the
orientation of the real gestures. This indeed increases the
size of the support set, yet, does not essentially introduce
new gesture classes, as a virtual gesture remains the same as
the real gesture used to generate it. With this virtual gesture
generation scheme, the model may mistake the same class
of gestures with slightly different orientations for different
classes.

In this section, we propose a novel virtual gesture syn-
thesization method to generate new gesture classes that have
not been explicitly observed during data collection. A virtual
gesture sample refers to a synthesized gesture sample that
retains the temporal characteristics and movement patterns of
multiple source gestures while introducing new combinations
of gestures. For example, if we have a source gesture ‘L’ and
another source gesture ‘I’, then we can connect them to get
a virtual sample ‘⊔’. However, achieving such a synthesis is
challenging as: (1) Directly splicing two source samples in the
temporal domain would make the duration of the generated
sample inconsistent with those of source samples. (2) If we
discard half of the elements of each source sample and then
concatenate, the duration of the newly generated sample will
not be abnormal, but the gesture information will be lost and
the virtual sample will not conform to the signal propagation
law in the physical world. To overcome this challenge, we
come up with a solution that does not prolong the duration
of new samples while conforming to the laws of physics. The
key idea is that we can accelerate the samples of two real
gesture classes and combine them to get a new class based on
the signal propagation model.
Gesture acceleration. To shorten the duration of the sample
while maintaining its inner gesture characteristics, we acceler-
ate gesture samples based on the physical signal propagation
law. Consider a source sample of a predefined gesture, if we
accelerate it to take only 1

n of the original time, then the
position of the moving target at time t after acceleration is
the same as that at time nt before acceleration. Therefore, we
have the following relations: sacc(t) = s(nt), θacc(t) = θ(nt),



(a) Drawing ‘1’ (b) Drawing ‘2’. (c) Virtual gesture.

Fig. 4: Generating Doppler spectrograms of virtual gesture (c)
by combining real ones (a) and (b).

αRacc
(t) = αR(nt), αTacc

(t) = αT (nt), where s, θ, αR, αT
denote the passed distance, moving direction, AoA and AoD
of the source sample, respectively; sacc, θacc, αRacc , αTacc

denote those corresponding measurements after acceleration,
respectively. Then, the velocity at time t after acceleration can
be calculated by:

vacc(t) =
dsacc(t)

dt
=

ds(nt)

dt
= n

ds(t)

dt
= n · v(nt) (5)

Combining with Eq. 3, we obtain the DFS of the accelerated
gesture at time t:

fDacc
(t) = −f0

vacc(t)

c
(cos(θacc(t)− αRacc

(t))

+ cos(θacc(t)− αTacc
(t)))

= −f0
n · v(nt)

c
(cos(θ(nt)− αR(nt))

+ cos(θ(nt)− αT (nt)))

= n · fD(nt)

(6)

Denote the Doppler spectrogram of the source sample as
S(f, t), where f ∈ [−F, F ], t ∈ [0, T ]. Then, for the
accelerated gesture, the Doppler spectrogram can be obtained
as: Sacc(f, t) = S( fn , nt), where f ∈ [−nF, nF ], t ∈ [0, Tn ].
Virtual gesture generation. We then combine the accelerated
samples to construct virtual samples in time length of the
source ones. Consider two samples of any two different source
gestures A and B, we can generate the Doppler spectrogram
sample of the virtual gesture A+B as:

SA+B(f, t) =

SA

(
f
2 , 2t

)
0 ≤ t < T

2

SB

(
f
2 , 2t− T

)
T
2 ≤ t ≤ T

(7)

The above process describes how to generate one virtual
gesture with two real gestures. In fact, this method can be
trivially extended to more than two real gestures. Theoret-
ically, users can generate infinite virtual gesture classes as
well as corresponding virtual samples to enrich the training
set. Fig. 4(c) shows the Doppler spectrograms of a virtual
gesture synthesized by two source gestures Fig. 4(a) and
(b), demonstrating the effectiveness of our virtual gesture
generation approach.

VI. AUG-META LEARNING

We aim at leveraging meta-learning to achieve one-shot
unseen gesture recognition. Nevertheless, we find that the pre-
training stage of the meta-learning would introduce a lot of

Fig. 5: Aug-meta learning framework.

TABLE I: Details of feature extractor architecture.

Layer Type Channel Kernel Size Stride
conv1 conv2d+BN+ReLU 16 3× 5 (2,2)
conv2 conv2d+BN+ReLU 32 4× 4 (2,2)
conv3 conv2d+BN+ReLU 64 4× 4 (2,2)

time cost and computational overhead. In this section, on the
basis of meta-learning, we design a new few-shot learning
framework named AML. It enables efficient and fast pre-
training while maintaining high one-shot gesture recognition
performance.

As shown in Fig. 5, our AML framework consists of three
stages, namely aug-training, meta-training, and fine-tuning.
The key idea is that: AML first employs the aug-training stage
to empower the model with deep feature extraction ability
through normal supervised learning over virtual gestures.
Then, in the meta-training stage, AML pre-trains the model
with original meta-learning technique over real collected ges-
tures to enhance the model’s generalization capability and
adaptability to few-shot scenarios. In the fine-tuning stage,
AML fine-tunes the pre-trained model with samples of unseen
gestures to enhance its specialization towards recognizing
these previously unseen gestures. The learning model men-
tioned above is composed of a feature extractor followed by
a classifier. The feature extractor contains three convolutional
layers, as shown in Tab. I. The classifier consists of a single
fully-connected layer. It is attached to the last convolutional
layer of the feature extractor, mapping the extracted deep
features to the confidence scores for different gesture classes.
The details of the three stages are as follows.

A. Aug-training

In the aug-training stage, we pre-train a feature extractor
fθ and a classifier cω using the generated virtual dataset
Dvirtual via classical supervised learning. We start pre-training
by randomly initializing the parameters of fθ and cω . Then,
we optimize the parameter sets θ and ω by minimizing the
following loss function:

LDvirtual(θ, ω) =
1

|Dvirtual|
∑

(x,y)∈Dvirtual

l(cω(fθ(x)), y) (8)



TABLE II: Details of the gesture classes considered in the evaluation. (CCW means counterclockwise.)

Draw ’1’ Draw ’2’ Draw ’3’ Draw ’4’ Draw ’5’
Base Draw ’6’ Draw ’7’ Draw ’8’ Draw ’9’ Draw ’0’

Gestures Draw ’0’ (CCW) Draw ’U’ Draw ’U’ reverse Draw ’N’ Draw ’N’ reverse
Swing left and right Swing right and left Draw Rectangle Draw Rectangle (CCW) Dig

Push and Pull Sweep Slide Clap Draw zig-zag
Unseen Draw Triangle Draw ’a’ Draw ’b’ Draw ’c’ Draw ’d’

Gestures Draw ’e’ Draw ’f’ Draw ’g’ Draw ’h’ Draw ’i’
Draw ’j’ Draw ’k’ Draw ’l’ Draw ’m’ Draw ’n’

where l represents the cross-entropy loss [15]; x and y denote
a gesture sample and its label, respectively.

After the above pre-training, the feature extractor will
possess the ability of deep feature extraction. As the number
of virtual gesture classes may be different from that of the
dataset used for meta-learning in the next stage, the classifier
cω will be discarded after aug-training.

B. Meta-training

In the meta-training stage, we employ FSL techniques to
sample a set of n-way 1-shot tasks {Ti}Ii=1 from the real
collected dataset, i.e., base dataset Dbase, where the integer n
can be selected from the interval [2, Nbase] (Nbase is the number
of classes in Dbase). We start training by loading the parameters
of the feature extractor fθ pre-trained in the previous stage, and
randomly initializing a new classifier cϕ. For each task Ti =
(Si, Qi), we use the support set Si to optimize the parameters
ϕ by minimizing the loss LSi

(θ, ϕ). Similar to Eq. 8, LSi
(θ, ϕ)

is calculated as follows:

LSi(θ, ϕ) =
1

|Si|
∑

(x,y)∈Si

l(cϕ(fθ(x)), y) (9)

During the above optimization process, we do not update the
model parameters directly. Instead, we record the optimized
parameters as ϕi for each task Ti. Then, we calculate the loss
on the query set Qi using the optimized parameters ϕi, which
is denoted as LQi(θ, ϕi).

Once we have completed training on all the tasks in
{Ti}Ii=1, we proceed to adapt the parameter sets θ and ϕ of
the model. This is done by minimizing the accumulated loss∑I
i=1 LQi

(θ, ϕi).
In this stage, the feature extractor is updated to learn better

representations from real-world samples and become more
capable of handling few-shot scenarios. The optimized feature
extractor will be directly used in the subsequent stage, while
the classifier will be discarded again.

C. Fine-tuning

In the final stage, we generate a Nunseen-way 1-shot support
set S from dataset Dunseen, where Nunseen is the number
of classes in Dunseen. This support set consists of only one
labeled sample for each unseen class. We first load the pre-
trained feature extractor fθ from the previous stage and fix
its parameters. Then, we attach a new classifier cψ to the tail
of fθ and fine-tune it over the one-shot support set S. After
fine-tuning, the feature extractor and classifier work together
to recognize unseen gestures with high accuracy.
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Fig. 6: Experiment setup in four environments.

VII. EVALUATION

This section presents the real-world implementation and
evaluation results of OneSense.
Experiment setup. We conduct experiments in four environ-
ments, including a laboratory, a dining room, a living room,
and an office, as shown in Fig. 6. The sensing area is a
2m × 2m square. We use one transmitter and four receivers,
all of which are commercial off-the-shelf (COTS) laptops
equipped with Intel 5300 network interface cards (NICs). The
transmitter (with one antenna) sends WiFi packets at a rate
of 1000 packets/s. Each receiver is set to monitor mode with
three antennas. Linux 802.11n CSI Tool [16] is installed to
extract CSI measurements from WiFi packets. The signals lie
in 5.54GHz.
Data collection. We recruit 10 participants to perform gestures
in our experiments, including six males and four females. We
define 40 gestures as shown in Tab. II, 20 classes of which
are used as base gestures, and the remaining 20 are regarded
as unseen gestures. Each base gesture is performed at least
30 times. We totally collect over 2900 gesture samples. In the
default setting, we use 20 base gestures and 6 unseen gestures
(‘push and pull’, ‘sweep’, ‘slide’, ‘clap’, ‘draw zig-zag’, and
‘draw triangle’) performed in the laboratory environment for
evaluation. In K-shot recognition, K samples are randomly
selected for fine-tuning and the remaining samples are used



for test.
Metric. We define accuracy to quantify the performance of
gesture recognition. Accuracy represents the probability that
a sample is correctly recognized. It can be calculated by:
accuracy = Ncor

Nall
, where Ncor and Nall denote the number

of correctly classified samples and the number of all tested
samples, respectively.

A. Overall Performance

We first compare OneSense with two state-of-the-art few-
shot gesture recognition systems, and then assess the effects
of our AML framework, data enrichment approach, number of
base classes, and number of unseen classes.
Comparison with state-of-the-art works. We compare One-
Sense with two state-of-the-art WiFi-based few-shot gesture
recognition approaches: OneFi [5] and WiGr [17]. OneFi
leverages data augmentation and transfer learning techniques
to recognize unseen gestures with only a few samples. WiGr
employs a modified prototypical network for few-shot recog-
nition. Fig. 7 shows the accuracies of OneFi, WiGr, and
OneSense under one-shot, three-shot, and five-shot settings.
In one-shot recognition, OneSense achieves an accuracy of
93.0%, surpassing OneFi and WiGr, which achieve 84.2% and
81.7%, respectively. OneSense also demonstrates superiority
under three-shot and five-shot settings. Moreover, OneSense
can easily adapt to variable unseen gesture classes, while
WiGr lacks the flexibility to change the number of unseen
gesture classes once its model is well-trained. Thus, OneSense
outperforms OneFi and WiGr, showing great user-friendliness
with its impressive ability in recognizing gestures using only
one training sample for each unseen gesture class.
Effect of AML framework. To demonstrate the advantages
of our AML framework, we compare OneSense with two
baselines: (1) retaining only the first pre-training stage, i.e.,
aug-training; (2) retaining only the second pre-training stage,
i.e., meta-learning. Fig. 8 illustrates the accuracies under one-
shot, three-shot, and five-shot settings. It can be found that,
in the one-shot setting, OneSense achieves higher accuracy
than the two baselines by a remarkable margin. For three-
shot and five-shot recognition, OneSense still outperforms the
baselines. This indicates that both the aug-training and meta-
training stages effectively improve the few-shot recognition
performance.
Effect of data enrichment. To reduce the manpower and
time consumed to collect real data, we propose a novel data
enrichment method, synthesizing virtual gestures to augment
the dataset without manual collection. To evaluate the effect of
our data enrichment method, we vary the number of generated
virtual gesture classes from 0 to 380 in step of 20. Fig. 9
presents the accuracies of one-shot, three-shot, and five-shot
recognition. The accuracies exhibit a noticeable increase as the
number of virtual gesture classes grows. When the number of
classes reaches 40, the accuracy curves become flat, indicating
that the accuracies tend to converge. These results suggest
that: (1) Data enrichment through virtual gesture generation is
beneficial for improving few-shot recognition performance on

new gestures. (2) With only a small number of virtual gesture
classes, OneSense can achieve outstanding recognition accu-
racies. This means that users only need to collect the samples
of a few real gesture classes, based on which OneSense can
generate sufficient virtual gesture classes.
Effect of number of base classes. As the number of base
classes determines the size of training datasets and reflects the
data collection overhead for pre-training, understanding how
it affects the recognition accuracy is crucial for optimizing
the system’s performance. To investigate its effect, we vary
the number of base classes from 0 to 20 in step of 1 and
recalculate the accuracies under one-shot, three-shot, and five-
shot settings. As shown in Fig. 10, when the number of
base classes is below six, the recognition accuracies exhibit
substantial improvement with each additional base class. For
instance, in one-shot setting, the accuracy increases from
57.2% with 2 base classes to 93.7% with 6 base classes.
Once OneSense employs over six base classes, the accuracies
become stable. From the above analysis, we conclude that:
(1) Involving base classes in pre-training indeed improves
the recognition performance of OneSense. (2) OneSense can
achieve satisfactory few-shot recognition performance with a
relatively small number of base classes, which further reduces
the overhead of data collection and model pre-training.
Effect of number of unseen classes. In practical applications,
users may require recognition of varying numbers of gesture
classes. We evaluate this scalability of OneSense by varying
the number of unseen classes from 2 to 20 in step of 1.
The results under one-shot, three-shot, and five-shot settings
are presented in Fig. 11. As expected, the accuracies show a
decreasing trend with an increasing number of unseen classes.
Nevertheless, even with a large number of unseen classes, the
accuracies remain high. For instance, the one-shot recognition
accuracy stays above 85% with 9 unseen classes. When
dealing with 20 unseen classes, OneSense can still achieve
accuracies of 72.8%, 87.5% and 91.2% in one-shot, three-shot
and five-shot recognition, respectively. Therefore, OneSense
can effectively adapt to new gestures without significant re-
training efforts and maintain excellent performance even with
a large number of classes.

B. Effect of Number of Receivers

The number of receivers is a crucial hardware configuration
that may affect the system’s performance. While having more
receivers generally provides CSI with more comprehensive
information, it also introduces larger resource overhead. In
this section, we explore the effect of the number of receivers
on the performance of OneSense by varying it from 1 to 4 in
step of 1. The resulting accuracies under one-shot, three-shot,
and five-shot settings are depicted in Fig. 12. We observe that
the accuracies do not vary obviously with the changes in the
number of receivers. Even when employing only one receiver,
the accuracy remains impressively high, surpassing 90%, 97%,
and 99% for one-shot, three-shot, and five-shot recognition,
respectively. This finding demonstrates the system’s robust-
ness even under a limited number of receivers. As a result,



Fig. 7: Comparison with state-of-the-art. Fig. 8: Effect of AML framework. Fig. 9: Effect of data enrichment.

Fig. 10: Effect of no. of base classes. Fig. 11: Effect of no. of unseen classes. Fig. 12: Effect of no. of receivers.

Fig. 13: Different locations and orientations.

OneSense proves to be feasible and effective in resource-
constrained environments, while still achieving satisfactory
gesture recognition performance.

C. Cross-domain Performance

In this subsection, we evaluate the cross-domain perfor-
mance of OneSense, where the system is pre-trained in one
domain while fine-tuned and tested in another. The considered
domains include environment, location (the user’s position
within the sensing area), and orientation (the user’s orientation
with respect to the transmitter), as shown in Fig. 13.
Cross-environment performance. We mark the environments
of the laboratory, dining room, living room, and office as Env1,
2, 3, and 4, respectively. To assess the cross-environment per-
formance, we first pre-train the feature extractor with samples
collected in Env1. Subsequently, we fine-tune the classifier
and calculate accuracies using data from Env1, 2, 3, and 4,
respectively. As depicted in Fig. 14, the accuracies for all these
environments are high, which indicates the outstanding cross-
environment performance of OneSense. This is reasonable as
we extract environment-independent Doppler spectrogram to

enable gesture recognition. Thus, once OneSense was boot-
strapped in an environment, it can be deployed in any other
environment for accurate gesture recognition.
Cross-location performance. Next, we investigate the effect
of user locations on the system’s performance. To this end, we
first collect data at six locations (marked as Loc1 to Loc6).
Then, we pre-train the feature extractor using the data collected
at Loc1 and fine-tune the classifier using data collected from
all six locations, respectively. Fig. 15 presents the recognition
accuracies for one-shot, three-shot, and five-shot scenarios. It
can be observed that, although there may be some variances
in performance, OneSense can achieve high accuracy at most
locations, indicating its notable adaptability to different user
locations. This capability is essential for real-world scenarios,
where users may perform gestures at various locations.
Cross-orientation performance. Similar to the cross-location
experiment, to assess cross-orientation performance, we con-
duct pre-training on data from the first orientation (Ori1),
and subsequently fine-tune the classifier using few-shot data
from all six orientations (Ori1 to Ori6). As illustrated in
Fig. 16, OneSense demonstrates commendable performance
across most orientations, while encountering some challenges
in Ori6. This is primarily because Ori6 involves the user
performing gestures with their back toward the transmitter,
resulting in significant signal attenuation. Nonetheless, the
accuracy achieved at Ori6 surpasses 93% in three-shot set-
tings. Overall, OneSense exhibits satisfactory cross-orientation
performance, showcasing its robustness in handling different
orientations.

D. Time Cost on AML

The time costs of AML mainly come from two components:
two-stage pre-training and fine-tuning. In this subsection, we



Fig. 14: Cross-environment performance. Fig. 15: Cross-location performance. Fig. 16: Cross-orientation performance.

assess the time costs of these two components based on an
NVIDIA RTX 3080 GPU.
Pre-training. The experimental results show that, OneSense
requires only 41.8 seconds for pre-training (including aug-
training and meta-training stages), to achieve a one-shot recog-
nition accuracy exceeding 90%. In comparison, a traditional
meta-learning approach, MAML [7], demands more than 300
seconds of pre-training to achieve an accuracy of convergence
(88.3%). It can be found that the delicate design of our AML
framework not only reduces the pre-training latency (86.1%+
reduction), but also improves the recognition performance.
Fine-tuning. In the use of OneSense, pre-training is done by
the developer, and the user only needs to perform fine-tuning.
As only a classifier with a few parameters needs to be updated
in fine-tuning, the tuning takes only 2.52 seconds. This means
that the gesture can be recognized quickly, demonstrating the
outstanding real-time performance of OneSense.

VIII. RELATED WORK

Gesture recognition is a critical and active research area,
enabling a wide range of applications, such as smart shop-
ping [18] and virtual reality [4]. Traditional gesture recog-
nition approaches often capture the gesture information using
cameras [19]–[21], wearable devices [22]–[24], or sonars [25]–
[27]. Although demonstrating high recognition accuracy, these
approaches have inherent limitations. Camera-based systems
only work under good lighting and line-of-sight conditions.
Cameras also raise concerns about privacy leakage. Wearable
devices offer on-body sensing, but impose user inconvenience.
Sonar-based solutions are limited in their sensing range. To
address these limitations, WiFi signals are exploited to achieve
gesture recognition [4], [28]–[35], as WiFi-based sensing
bears several appealing advantages, including visual privacy
preservation, robustness to occlusion, and ubiquitous infras-
tructures [36]–[40].

Existing WiFi-based approaches typically extract features
from CSI, and map them to human gestures using learning
models. However, most of them require massive training sam-
ples to get decent recognition accuracy, which poses significant
challenges in data collection and annotation. Recent years
have seen some WiFi-based works exploring few-shot gesture
recognition, aiming to recognize gestures with only a small
number of labeled samples [5], [17], [41], [42]. However,
they still face high overhead and inadequate accuracy. For
example, OneFi [5] leverages virtual sample generation and

transfer learning to achieve few-shot unseen gesture recog-
nition. Yet, its virtual sample generation requires estimating
velocity distributions from CSI on at least three receivers,
making it time-consuming and resource-intensive. Another
solution, WiGr [17], employs a modified prototypical net-
work to improve the recognition performance under few-shot
conditions. However, when the number of gestures changes,
WiGr needs to re-train the entire model from scratch, resulting
in additional computational overhead. Moreover, the one-shot
recognition accuracy of these approaches cannot reach 90%,
which is somewhat not satisfactory for realistic applications.

To overcome these challenges, we propose OneSense, a
WiFi-based one-shot gesture recognition system that achieves
high accuracy with only one labeled sample per gesture class.
OneSense addresses the overhead and accuracy issues faced in
existing few-shot approaches by sophisticated virtual gesture
generation and learning framework designs, which provides a
promising solution for real-world deployment.

IX. CONCLUSION

In order to improve the scalability of WiFi-based gesture
recognition to new gesture classes, this paper proposes a novel
solution called OneSense. In its design, we first present a
virtual gesture generation method based on the signal prop-
agation model to enrich the training data. Then, an AML
framework is devised to enable scalable one-shot gesture
recognition on one hand, and greatly reduce the model training
overhead on the other. Extensive real-world experiments show
that OneSense can achieve 93% one-shot gesture recognition
accuracy. Meanwhile, the performance of OneSense will not
degrade with the changes of the environment, user location,
or user orientation.
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