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Abstract—As deep neural networks (DNNs) are increasingly
adopted in safety-critical applications such as autonomous driv-
ing and face recognition, they have also become targets for
adversarial attacks. However, confidential information of DNNs —
including model architecture — is typically hidden from attackers.
As a result, adversarial attacks are often launched in black-box
settings, which limits their effectiveness. In this paper, we propose
ModelSpy, a stealthy DNN architecture snooping attack based
on GPU electromagnetic (EM) leakage. ModelSpy is capable of
extracting complete architecture from several meters away, even
through walls. ModelSpy is based on the key observation that
GPU emanates far-field EM signals that exhibit architecture-
specific amplitude modulation during DNN inference. We de-
velop a hierarchical reconstruction model to recover fine-grained
architectural details from the noisy EM signals. To enhance
scalability across diverse and evolving architectures, we design
a transfer-learning scheme by exploiting the correlation between
external EM leakage and internal GPU activity. We design and
implement a proof-of-concept system to demonstrate ModelSpy’s
feasibility. Our evaluation on five high-end consumer GPUs shows
ModelSpy’s high accuracy in architecture reconstruction, includ-
ing 97.6% in layer segmentation and 94.0% in hyperparameter
estimation, with a working distance of up to 6 m. Furthermore,
ModelSpy’s reconstructed DNN shows comparable performance
to victim architecture, and can effectively enhance black-box
adversarial attacks.

I. INTRODUCTION

Deep neural networks (DNNs) are revolutionizing numerous
critical applications, including face recognition, autonomous
driving, and medical diagnosis [L], [2], [3]. However, their
growing adoption also makes them prime targets for adversar-
ial attacks, such as evasion attacks that deceive the system with
adversarial examples [4]. To mitigate these risks, DNN-based
systems and services avoid disclosing implementation details
about their DNN models. Consequently, attackers are often left
with limited prior knowledge and have to launch their attacks
in black-box settings with reduced attack effectiveness [15], [6].

To improve the effectiveness of black-box attacks, compro-
mising the confidentiality of DNN models, particularly their
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Fig. 1: Figure depicts an example attack scenario of ModelSpy.
An attacker, posing as maintenance staff, walks along the
corridor outside an Al company’s office and reconstructs the
victim’s DNN architecture by sniffing EM signals leaked
through the wall from the victim’s GPU to facilitate subse-
quent black-box adversarial attacks.

architectures, has garnered significant attention [7]], [8]], [9],
[LO]. The architecture of a DNN, determined by its layer
structure and hyperparameters, defines how data flows through
the network and is a critical secret within the DNN system.
Attackers with knowledge of the architecture can execute more
targeted and effective attacks [7]], [L1]. For example, attackers
can tailor their adversarial examples to deceive autonomous
vehicles or bypass security checks like face recognition with a
higher success rate [12]. Besides evasion attacks, architecture
knowledge also plays an important role in enhancing other
severe attacks, including model extraction attacks [13], [[14]
and membership inferencing attacks [[15] (detailed in §IT-A).
As a result, the DNN architectures are considered a highly
confidential asset in DNN-powered systems and demand ro-
bust protection against potential adversaries.

While model architecture file is typically encrypted and
beyond the reach of adversaries [16], [17], [18], [19], prior
works have shown the feasibility of extracting DNN archi-
tectures by analyzing side-channel with cache analysis, bus
snooping, and performance interface monitoring [20[], [21],
[22], [9]. They typically exploit shared hardware resources and
assume co-locating a malware with the victim’s DNN process.
Researchers have proposed various mitigation strategies to
close such vulnerabilities [23], [24], [25]. In scenarios where



co-location is infeasible or effectively defended, physical side
channels have emerged as a promising alternative [8]], [26],
[27], [13]. Recent studies show that an attacker within the
vicinity of the DNN inference hardware could collect their
physical signals, such as electromagnetic (EM) leakage, to
extract DNN architecture. However, the practical adoption of
these attacks is severely constrained by their limited range,
e.g., requiring sniffers to be directly attached to GPU’s power
cable inside the victim host [8] or invasive procedures like
chip decapsulation [26]], thereby lacking stealth.

In light of these limitations, we pose the following research
question: Is it possible to design a novel physical attack
that can fully extract a victim’s DNN architecture, while
maintaining attack stealthiness? To this end, we introduce
ModelSpy, a long-range DNN architecture snooping attack
based on far-field EM signals that can reconstruct the complete
architecture of unseen victim DNNs, including number of
layers, layer types, and layer-wise hyperparameters. The key
insight of ModelSpy lies in the observation that GPUs emit far-
field radiative EM leakage, generated by digital components
such as memory clocks and voltage regulators. These leakage
signals are architecture-specifically modulated during DNN
inferences (§III-B). By intercepting these modulated signals,
ModelSpy achieves a high level of stealth, effectively oper-
ating from several meters away with the sniffer concealed
in a backpack, even with obstacles. Figure [I] illustrates an
example attack scenario: an attacker, posing as maintenance
staff, walks along the corridor outside an Al company’s office
and reconstructs the complete DNN architecture by sniffing
their GPU’s EM signals leaked through the wall. With access
to the victim architecture, attackers can launch various sub-
sequent adversarial attacks. For example, an evasion attack
in the context of an autonomous driving company occurs
when an attacker uses the architecture information to create
adversarial examples that mislead the DNN into making faulty
decisions, potentially putting vehicles at risk. Additionally, a
membership inference attack can be carried out to uncover
sensitive information about the data used in training, or a
model extraction attack may be performed to replicate the
model’s functionality (detailed in §II-A).

Designing ModelSpy involves two primary challenges. The
first challenge lies in performing fine-grained reconstruction
using noisy and attenuated EM signals. Although radiative EM
signals can propagate over long distances, they suffer from low
signal-to-noise ratios (SNR) due to ambient interference and
propagation loss. Existing methods, designed for clean near-
field signals, exhibit significant performance degradation [8].
To address this, we employ a specialized noise removal
pipeline that isolates relevant EM components (§IV-E) and de-
velop a hierarchical neural reconstruction engine that leverages
global signal contexts for fine-grained reconstruction (§IV-C).
This two-fold approach is demonstrated to be effective even
in harsh signal conditions.

The second challenge is to enhance the attack scalability
across the vast architecture space with implementation vari-
ations. Modern DNNs often consist of deeply stacked layers

with diverse hyperparameters. Besides, runtime implementa-
tion variations result in distinct EM signatures even for the
same logical layer. Since our reconstruction engine relies
on supervised training, scaling the training data to capture
this architectural and implementation diversity becomes a
significant bottleneck. To address this, we propose a trans-
fer learning scheme that leverages the temporal correlation
between external EM leakage and internal GPU activity —
particularly DRAM read and write — which are efficient to
collect and label (§IV-B| & §IV-D). ModelSpy is first pretrained
on DRAM traces, i.e., time-series sequences of DRAM access
activity, and then fine-tuned on a small set of EM signals,
enabling scalable and robust architecture reconstruction.

We implement a proof-of-concept system leveraging a
5 GHz antenna for capturing the GPU leakage signals (dis-
cussed in §III-B). ModelSpy is evaluated through real-world
experiments across five GPUs, collecting a substantial dataset
from 141,000 DNN inference trials. We comprehensively
evaluate ModelSpy’s performance under various conditions,
including different distances, wall obstructions, and ambient
EM interference. Additionally, we conduct an end-to-end
adversarial attack using the reconstructed architecture obtained
by ModelSpy. Overall, ModelSpy achieves 97.6% accuracy
in layer segmentation (identifying layer numbers and types)
and 94.0% accuracy in hyperparameter estimation, remaining
effective even at a distance of five meters, significantly out-
performing the state-of-the-art systems.

Our main contributions are summarized as follows:

o We propose ModelSpy, the first long-range DNN architec-
ture snooping attack capable of reconstructing complete
architectures of unseen black-box DNNs from up to 6 m
away, demonstrating superior stealthiness and practicality
compared to prior millimeter-range attacks.

e Our cross-layer analysis shows that DNN inference in-
duces architecture-specific DRAM access, which in turn
produces specific amplitude-modulated EM traces. We
further establish a scalable pipeline for fine-grained ar-
chitecture reconstruction from noisy EM traces.

o We evaluate ModelSpy through extensive real-world ex-
periments, demonstrating high reconstruction accuracy
and its effectiveness in enhancing subsequent black-box
adversarial attacks.

Through this work, we hope to highlight that securing ad-
vanced Al systems will require an evolution in infrastructure
security, especially in light of rapid Al advancements and the
growing deployment of DNN on edge and mobile devices,
which are more physically accessible and thus more suscepti-
ble to physical attacks like ModelSpy (detailed in §VI-B).

II. MOTIVATION AND THREAT MODEL

We present the attacker’s motivation, goal, and capabilities.

A. Motivation of ModelSpy

Attackers may steal a DNN architecture as a precursor to
subsequent black-box adversarial attacks on DNN-based
systems, including evasion attacks, membership inference
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Fig. 2: Figure depicts how attackers can leverage the ar-
chitecture extracted by ModelSpy to enhance the success of
adversarial attacks on autonomous vehicles.

attacks, and model extraction attacks [15]], [28], [29]]. In black-
box settings, attackers have no access to the victim model’s
internals and thus rely on a surrogate model — a locally con-
structed substitute used to craft or simulate attacks [29], [30].
The closer the surrogate matches the victim’s architecture, the
more effective the attack is when applied to the victim model.
This is where ModelSpy comes in: by sniffing EM signals,
ModelSpy extracts fine-grained DNN architecture, providing
valuable prior knowledge to build high-fidelity surrogates
and boost the success rate of adversarial attacks. Below, we
present example attack scenarios enhanced by ModelSpy, with
experimental validation in

A typical adversarial attack that can be enhanced by Mod-
elSpy is evasion attack with adversarial examples [28]. As
shown in Figure 2] the attackers first train a surrogate model to
generate the adversarial examples, which are then applied to
the victim model. Instead of selecting a surrogate architecture
at random, the attacker can use the high-fidelity architecture
extracted by ModelSpy to significantly increase the attack
success rate. In a real-world scenario, a malicious employee at
an autonomous vehicle company could use ModelSpy to steal
the model architecture, then generate subtle adversarial per-
turbation to road signs (e.g., stickers or markings) to mislead
the vehicle’s perception system into dangerous behavior, such
as accelerating when it should stop [31], [32]].

Similarly, by increasing the fidelity of the surrogate model,
ModelSpy can enhance membership inference attacks. In
a real-world scenario, a malicious hospital employee could
use ModelSpy to steal the architecture of a diagnostic model
and build a more accurate surrogate, improving their ability
to determine whether a specific individual was included in
the training data, potentially exposing sensitive health infor-
mation [15]. ModelSpy can also enhance model extraction
attacks. For instance, a malicious insider at an Al startup
could use ModelSpy to extract the architecture of a proprietary
DNN deployed on a production server to replicate the model’s
functionality with higher effectiveness, facilitating unautho-
rized misuse or commercialization [14].

B. Threat Model

Attacker’s Goal. The goal of the attacker is to reconstruct the
victim’s DNN architecture by exploiting EM leakage signals
emitted from the victim’s GPU. A DNN consists of two main

components: its architecture and weightsﬂ The architecture
defines the overall structure and computational flow of the
network and is a key confidential asset that governs model
behavior. Specifically, architecture attributes include:

o Number of Layers. The target DNN may contain an arbi-
trary number of layers with no upper-bound assumption.

o Types of Each Layer. The layer types include convo-
lutional, recurrent, transformer, and linear layers, along
with interspersed normalization (e.g., BatchNorm, Lay-
erNorm), activation (e.g., ReLU, Sigmoid), and pooling
layers (e.g., MaxPool, AvgPool).

o Layer-Wise Hyperparameters. Hyperparameters spe-
cific to each layer, such as filter sizes in convolutional
layers or hidden sizes in transformer layers.

ModelSpy attacker aims to extract all the above architec-
tural attributes. These components represent the core building
blocks of modern DNNs widely deployed across various
machine learning applications [1]], [LO].

Attacker’s Capabilities. The attacker can intercept EM leak-
age signals from the victim’s GPU during DNN inference in
a non-intrusive, black-box manner, without interacting with or
tampering with the victim’s hardware or software. The DNN’s
code, memory, and design remain inaccessible, and only the
inference stage runs on the victim’s host. ModelSpy assumes
no prior knowledge of the DNN, model family, layers, input
size, or batch size. While the attack does not require knowing
the victim’s GPU model, optimal results are achieved when
this information is available, as shown in §V-C5| Finally, the
primary scope of ModelSpy is to extract the DNN architecture,
which does not require additional information such as the
victim model’s training dataset and weights. Such information
may be needed for subsequent adversarial attacks, but it is not
essential for ModelSpy’s architecture snooping process.

III. BACKGROUND

We present the background of GPU EM side-channel and
the feasibility study of ModelSpy.

A. GPU EM Side-Channel

Electronic circuits within computers generate EM emana-
tions as a side-effect of current flows. Since current flows in
the systems vary with program activity, these EM emanations
often convey sensitive information. As a typical electronic
component, GPUs emit — 0 non-radiative magnetic signals,
as well as 9 radiative EM signals. Previous works have
leveraged non-radiative magnetic signals to infer DNN ar-
chitectures, as these signals are clean and strongly correlated
with GPU activities [33]], [8]. However, these signals attenuate
rapidly with distance and require close proximity, such as
placing the sniffer within millimeters of the GPU power line,
significantly lacking stealth. To enable a long-range attack,
ModelSpy exploits radiative EM signals, which can propagate

'Weights are the learnable parameters optimized during training. While
both components are critical, this work focuses exclusively on recovering the
architecture, which is also a prerequisite for weight extraction [13]].
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Fig. 3: Figure depicts the mechanism behind architecture leak-
age in EM side-channel. Digital components on the GPU con-
tinuously emit carrier signals, which are amplitude-modulated
by architecture-specific activity such as DRAM access.

longer distances despite being significantly noisier than non-
radiative leakages.

B. Characterizing Long-Range EM Radiation

During DNN inference, the radiative EM signals exhibit
an amplitude-modulation scheme, with DNN architecture as
the baseband signals. Figure [3] illustrates this process. GPUs
continuously emit radiative EM signals from their digital com-
ponents such as voltage regulators, memory clocks, and mem-
ory refresh circuits [34], forming the carrier signal Scapier(t).
When DNN inference is executed, it induces architecture-
specific hardware activity (e.g., DRAM access), which serves
as the baseband signal spnn(t). The resulting modulated
signal can be simplified as sgm(t) = Scamier(t) - SpNn(t). We
further validate this phenomenon in §III-C] Although GPU
manufacturers, like NVIDIA, apply techniques such as spread-
spectrum clocking (SSC) to reduce EM interference at specific
frequencies by broadening the frequency range, these signals
remain detectable from several meters away.

The resulting EM signals are wideband, due to combined
contributions of both carrier and baseband components [34],
[35], [36]. To model this process, we use SSC as a represen-
tative carrier source [37], expressed as:

N
(t) = Z AssctnejZﬂ—fssc’nﬁ (1)

n=0

Scarrier

Here, Asscn and fosen = far — nfm represent the ampli-
tude and frequency of the n-th sub-clock, where f. is the
base clock frequency, and f,,, represents the SSC modulation
frequency. N denotes the total number of sub-clocks. The
baseband signals caused by DRAM accesses during DNN
inference are modeled as:

span ()

M
= A ult —ty), )
m=1

where A,, and t,,, denote the amplitude and the timestamp of
the m-th DRAM access, with u(t —t,,,) representing step-like
DRAM transition via Heaviside function. Then, the frequency
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Fig. 4: Figure depicts ModelSpy’s fea51b1l1ty setup composed
of a test GPU host and a USRP B210 with an omnidirectional
antenna for EM signal acquisition.
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Fig. 5: Figure depicts the denoised EM signals from GPU
when the host is performing inference on (a) a 12-layer CNN
model and (b) a four-layer Transformer model.

domain representation spm(f) = F[spm(t)] = FlScarrier(t) -
spnn(t)] can be mathematically derived as:

M N

Z Z AmAssene =27 (f = fose,n)tm

m=1n=0 3)

) 1
X <25(f - fssc,n) + Wfssc,n)> .

This formulation illustrates that the GPU EM signal sgm(f)
disperses across a wide frequency band, with energy spreading
around each sub-carrier frequency fss., due to the intrinsic
hardware execution. This phenomenon is then validated ex-
perimentally. We observe that although the memory clocks
of all five evaluated GPUs exceed 6 GHz, i.e., the upper-
frequency limit of the USRP B210, the same DNN inference
is detectable across center frequencies from 5 to 6 GHz,
indicating that sgm(f) spans a wide frequency band. We
specifically selected 5 GHz as the center frequency because it
lies outside the 5.15 to 5.85 GHz range typically utilized by
WiFi, thereby minimizing potential interference with ambient
wireless communication signals. We provide detailed modeling
and discussion in Appendix [A]

SEM(f

C. Feasibility Study

We verify the correlation of EM leakage with architecture.
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Fig. 6: Figure depicts the global temporal correlation between
the DRAM trace and EM signals despite local differences.

Feasibility Setup. Figure [4] depicts our setup consisting of a
test host with an RTX 3060 Ti GPU and a USRP B210 with
an omnidirectional antenna for EM signal acquisition [38]].
EM signals are captured using GQRX, an SDR receiver
application, at a 5 GHz center frequency and 8 MHz sampling
rate, as discussed in The USRP downconverts the
received signal sgy with a 5 GHz local oscillator and outputs
complex I/Q baseband samples representing the time-series
signal Spnn.

Correlation between EM Signals and DNN Architectures.
We capture EM signals during GPU inference on a 12-layer
CNN and a four-layer Transformer model. After applying a
specialized denoising workflow (§IV-E), the signals, shown
in Figure [5(a) and (b), exhibit amplitude variations that align
with transitions between layer executions, suggesting that EM
signals can capture architecture-specific characteristics. As
discussed in this is due to the correlation between
EM signals with internal GPU activity, e.g., the GPU DRAM
access pattern, referred to as DRAM traces. As shown in
Figure [ the DRAM trace and denoised EM signal show a
globally aligned stepped pattern, with simultaneous rises and
drops. There exist some local differences as EM signals are
also influenced by other hardware activities such as computa-
tion and control logic. In short, this feasibility study supports
our key observation: DNN architecture acts as a baseband
signal that amplitude-modulates the EM signals, enabling
these signals as a proxy for architecture reconstruction.

IV. DESIGN AND IMPLEMENTATION

We now present ModelSpy’s design and implementation.

A. Design Overview

ModelSpy’s design enables the reconstruction of victim
DNN architecture via the EM leakages of GPUs. It comprises
two key phases: the Bootstrapping Phase and the Attack Phase,
as shown in Figure [7/(a) and (b). The goal of Bootstrapping
Phase is to train a reconstruction engine (§[V-C) capable of
inferring the DNN architecture from denoised EM signals.
This is achieved by training on a large, labeled dataset of
randomly generated DNN architectures. To minimize training
data collection overhead to enhance scalability, ModelSpy em-
ploys transfer learning (§IV-D) with a hybrid training dataset
(§IV-B): the reconstruction engine is initially pre-trained on
labeled DRAM traces collected during DNN inference and
then fine-tuned with a smaller set of labeled EM signals.

During the Attack Phase, the trained reconstruction engine
is used by the attacker to reconstruct the victim’s DNN
architecture. This includes determining the number of layers,
the type of each layer, and the layer-wise hyperparameters, all
by intercepting EM signals from the victim’s GPU running
the target DNN. The collected EM traces in both phases are
first preprocessed in the Noise Removal module (§IV-E) to
filter out ambient and internal noises before being fed into
the reconstruction engine, which finally outputs the victim
architecture with high accuracy.

Designing ModelSpy involves two main challenges —
Challenge 1: Fine-grained Reconstruction with Low-SNR
EM Signals. Although radiative EM signals can propagate
over long distances, the received signals exhibit low SNR
due to ambient interference and significant attenuation during
propagation. The challenge is further intensified by the short
inference time on high-end GPUs (e.g., ResNet-101 completes
in around 0.1 seconds). Existing approaches are limited to
coarse-grained recognition of previously seen architectures
via classification-based pattern matching [39], [40], [26], or
can only handle clean near-field signals but not effective for
noisy far-field signals [8] (shown in §V-B). To address this
challenge, we propose a specialized Noise Removal Module
(§IV-E) and a Hierarchical Reconstruction Engine (§IV-C).
Challenge 2: Scalable Reconstruction Across Vast Archi-
tecture Space with Implementation Variations. Fine-grained
reconstruction requires exploring a huge search space. For
instance, even with just five layer types, a 100-layer network
yields approximately 107 possible configurations, which is
further expanded when including hyperparameter variations.
Moreover, runtime optimizations introduce implementation
variations that are unknown to the attacker, resulting in
distinct EM signatures even for the same logical layer. For ex-
ample, a convolution layer can be implemented using GEMM,
FFT, or Winograd [41]. As shown in Figure [§] the 12-layer
CNN example mixes GEMM and FFT-based convolutions,
with layers 5 to 8 using FFT and the rest using GEMM.
Meanwhile, training the reconstruction engine requires fine-
grained supervision, i.e., with synchronized labels for each
EM signal segment indicating the corresponding layer type
and hyperparameters. Labor-intensive manual collection and
annotation can hardly scale to such architectural and im-
plementation diversity. We address this through our Hybrid
Training Set Collection (§IV-B) and DRAM-Assisted Transfer

Learning Module (§IV-D).

B. Hybrid Training Dataset Collection

This module generates a hybrid, labeled dataset to train
ModelSpy’s reconstruction engine, addressing the scalability
challenge (i.e., Challenge 2). Hybrid refers to the combination
of a smaller dataset of EM signals and a larger dataset of
internal GPU activities, specifically DRAM read and write
operations. As detailed in the DRAM traces are used
for pre-training, while the EM signals are used only for fine-
tuning. This approach leverages the following two key insights.
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Fig. 8: Figure depicts that EM behavior of convolution layers
varies with different implementations.

Key Insight 1: Temporal Correlations between DRAM
Trace with EM signals. As discussed in §III-C] with Figure [6]
DRAM traces exhibit strong global temporal correlation with
denoised EM signals. While EM signals may show local fluc-
tuations due to other hardware activities, the overall correlation
makes DRAM traces well-suited for pre-training.

Key Insight 2: Scalable DRAM Collection and Annotation.
We use DRAM for pre-training primarily due to its scalability
in data collection and annotation. Unlike externally collected
EM signals, which lack synchronization with the GPU host,
DRAM traces can be collected internally using a GPU pro-
ﬁleﬂ This enables synchronized tracing of GPU workloads
and generation of time-step-level layer segmentation labels.
Since DRAM collection does not require external sensing
hardware or manual alignment, it can be fully automated using
scripted collection workflows. As a result, we can efficiently
assemble a large and diverse training dataset with minimal
effort, ensuring the scalability of ModelSpy. Experimental
results in §V-CB)| further validate its effectiveness.

C. Neural-Based Reconstruction Engine

Our reconstruction engine is a neural network that takes EM
signals as input and outputs the fine-grained DNN architecture,
including all layers and their hyperparameters (i.e., addressing
Challenge 1). At its core, the engine is designed to leverage
global contextual information to improve robustness and accu-
racy. As illustrated in Figure[J] it is organized into three stages.
The first two stages follow a sequence-to-sequence (Seq2Seq)

2The profiler is only run on an attacker-controlled host in Bootstrapping
Phase for training data collection. It is not required in the Artack Phase.
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framework: Stage I extracts time-step-level contextual features
from the EM signals, and Stage II assigns layer type labels
to each segment. These labeled contextual features are then
passed to Stage III for hyperparameter estimation.

1) Stage I: Contextual Feature Extraction: This stage aims

to transform the input signal sequence X = (x1,--- ,X7) into
contextual features C = (cq,--- ,cr) that capture sequence-
level contextual semantics, as shown in Figure [10]
o [Key Design 1]: Transformer-based Context Network. The
core of Stage I is a Transformer-based Context Network, which
is known for its capability to capture contextual dependencies
from the entire sequence [42]], [43]. It begins with learnable
positional embeddings, followed by 12 Transformer blocks,
each with a model dimension of 128, an inner dimension of
512, and 8 attention heads.
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e [Key Design 2]: Down and Up Projection. Transformer-
based networks have memory and computational requirements
that grow quadratically with sequence length, making it in-
feasible to process long sequences like EM signals [44],
[45]. Hence, we first shorten the sequence using a Down
Projection Network before the Context Network, and up-
project it back using an Up Projection Network. As shown
in Figure [I0] the Down Projection Network consists of three
downblocks. The convolutions in each downblock have (32,
64, 128) channels with MaxPool strides of (5, 2, 2) and kernel
widths of (10, 3, 3). With an input frequency of 10 KHz, this
configuration results in an down projected frequency of 500 Hz,
making it suitable for the Context Network. The Up Projection
Network, with three upblocks using the same hyperparameters
as the downblocks, generates the dense contextual features
C = (cy, -+ ,cr) that align with the time steps of the input.
o [Key Design 3]: Skip Connections. To minimize the loss of
details due to Down Projection, we introduce skip connections
between the k-th (k=1,2,3) downblocks and their correspond-
ing upblocks, as shown in Figure [I0] to enhance the resolution
of contextual feature extraction.

2) Stage II: Layer Segmentation: Ultilizing the contextual
features C = (c;---c7) € RT*? where d is the feature
dimension, the Layer Segmentation Stage segments the time
series by associating each time step of the raw EM signal with
a specific layer label, such as Conv, MaxPool, LSTM, Trans-
former, Linear, etc. Our approach involves learning a linear
classifier hejqss € R¥NE that maps the contextual features
C to the corresponding layer label map Y by minimizing the
cross-entropy (CE) loss on labeled data, where N, is the total
number of layer types [46]. Given the ground-truth label map
Y, the loss is defined as: Ligyer = fo:l CE(Ym,Ym),
where M is the total number of labeled signals in the dataset.
This loss function measures the discrepancy between the

predicted and ground truth labels for each time step, ensuring
precise layer segmentation of the EM signals.

3) Stage III: Hyperparameter Estimation: ModelSpy es-
timates the hyperparameters of each layer using a set of
specialized HyperNets tailored for individual hyperparameter
types. Some layers, e.g., activation functions, do not require
parameters, and thus we have 11 HyperNets in total. Depend-
ing on the type, HyperNets are implemented as either linear
classifiers or regressors. For example, the kernel size of a
convolution layer is one of a few discrete values, and hence
is treated as a classification problem using cross-entropy loss.
For hyperparameters with a larger discrete range, we perform
regression with mean squared error loss. Since a layer spans
many sampling points, we determine the final hyperparameter
for a layer by taking the mode of the predicted values from
all sampling points. We optimize the total loss, L}, which is
the sum of individual HyperNet losses, for accurate estimation
of all hyperparameters. Finally, we train the three stages in an
end-to-end manner [47], with joint optimization of the sum
of the loss functions £ = Ljqyer + Lnyp. We provide further
training details below.

D. DRAM-Assisted Transfer Learning

We now detail how ModelSpy’s reconstruction engine is
trained via transfer learning with the hybrid training dataset
(§IV-B) to further enhance scalability (i.e., Challenge 2).
Pre-training with DRAM Traces. ModelSpy’s reconstruction
engine is first pre-trained end-to-end on a large DRAM dataset
Dp, which contains Mp DRAM samples and their corre-
sponding label maps. Given that DRAM traces are generally
smoother than EM signals, we introduce random Gaussian
noise at a 30 dB level during pre-training to bridge this gap.
This augmentation helps the model adapt better when fine-
tuning with the more complex and noisier EM signals. We
use the Adam optimizer with a learning rate of 1.6e-04 [48]],
training with a batch size of 64 for 400K updates.
Fine-tuning with EM Signals. The model is then fine-tuned
on a small EM dataset Dr. We compare two popular fine-
tune methods: full fine-tuning (updating all parameters) versus
linear probing (updating only the last layer) [49]. We find that
full fine-tuning yields better performance on ModelSpy. We
also use the Adam optimizer with a learning rate of 1.6e-04
and a batch size of 64 for 2K updates. The transfer learning
approach significantly enhances the scalability of ModelSpy,
with its effectiveness thoroughly evaluated in

E. Noise Removal on EM signals

This module processes the noisy EM signals through noise
removal steps, ultimately producing relatively clean signals
(i.e., Challenge I). Simultaneously, we downsample EM sig-
nals from 8 MHz to 10 KHz to reduce computation overhead
for the reconstruction engine. Figure a) to (f) describes the
noise removal pipeline.

Pulse Noise Removal. EM signals consist of impulsive noise
due to other electronic components on the host and ambi-
ent interference. We resolve this by applying the Hampel
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Fig. 11: Figure depicts ModelSpy’s noise removal pipeline
consisting of five steps.

No. GPU Model Architecture # Cores | Memory | Year
1 RTX 3060 Ampere 3584 12GB 2021
2 RTX 3060Ti | Ampere 4864 8GB 2021
3 RTX 3070 Ampere 5888 8GB 2020
4 RTX 4060 Ada Lovelace | 3072 8GB 2023
5 RTX 4060Ti | Ada Lovelace | 4352 16GB 2023

TABLE I: Table lists the tested GPUs, their architecture,
number of CUDA cores, memory size, and release year.

filter [50]], which detects and removes pulse-like noises. The
filter computes the median m and standard deviation o for
each 0.1-ms sliding window. Any sample deviating more than
3o from m is identified as an outlier and replaced with the
median, as shown in Figure ﬂ;fkb).

Normalization. To mitigate the impact of sniffing distance on
signal strength, we perform z-normalization on the EM signal,
z(t), and obtain the normalized signal, Z(¢). The denoised
signal Z(t) is computed as w, where p and o are the
mean and standard deviation of the overall signals [31].
Moving Average Filter. Before downsampling, we apply a
moving average filter over 800 consecutive samples (0.1 ms)
to smooth the signal, reducing high-frequency noise and pre-
venting aliasing. This filter is aligned with the downsampling
factor for consistency in the processing pipeline.
Downsampling. For computational efficiency in the recon-
struction engine, we downsample the EM signal from 8 MHz
to 10 KHz using a factor of 800. This reduces the sampling
rate, lowering computational complexity while preserving the
essential features of the signal for further analysis.

Median Filter. To suppress residual noise in the downsampled
EM signal while preserving edges, we apply a median filter
with a window size of 3 samples. Our overall noise removal
design provides cleaner and downsampled EM signals for
DNN reconstruction.

V. EVALUATION

We present the evaluation of ModelSpy through comprehen-
sive real-world experiments, demonstrating its feasibility.

Dataset # DNN Archs | # Inference Trials | # Layers

Train (DRAM) | 2,300 23,000x5 GPUs 314,170x5 GPUs
Train (EM) 260 2,600x5 GPUs 41,110x5 GPUs
Test (EM) 260 2,600x5 GPUs 39,110x5 GPUs

TABLE II: Table enumerates the number of distinct DNN
architectures (Archs), DNN inferences, and distinct layers in
the training and test datasets.

= Sniffer in the bag

Location of
Victim Host

Fig. 12: Figure depicts the cross-wall experiment setup with
the victim host and attacker separated by a wall; the sniffer is
hidden in the attacker’s backpack.

A. Experimental Setup

We first introduce ModelSpy’s experimental setup.

1) Platforms: Our setup (Figure [ consists of a target
device — a GPU host running DNN inference with Ubuntu
24.04 OS, as well as our EM sniffer, consisting of a USRP
B210 [38] with a radio antenna. We employ two types of
antennas: an omnidirectional antenna and a 20x20 cm panel
antenna, both with a center frequency of 5 GHz and a sampling
rate of 8§ MHz. The EM sniffer is positioned 1 meter from the
target device by default. We also evaluated ModelSpy under
cross-wall scenario (Figure [I2) in §V-C2] The EM signal
captured is then denoised and downsampled to 10 KHz using
our Noise Removal module (§IV-E). The entire EM sniffer
(antenna + USRP) is compact and can be concealed within a
20L backpack.

2) Dataset Collection: We evaluate ModelSpy on a total of
five GPU models released in the past four years with varying
architectures and numbers of cores as depicted in Table

The collected dataset is shown in Table The training
and test architectures are generated from two sources. First,
we select popular and widely used model families, including
AlexNet, VGG, ResNet, BERT, and their variants [52]], [53l],
[54], [55]. We build the variant models by randomly altering
network layers (e.g., adding or removing layers) and adjusting
hyperparameters while adhering to the design principles of
their respective model families. Second, we generate random
models, consisting of CNNs (with random combinations of
convolutional layers, activation layers, pooling layers, and
possibly normalization layers), LSTMs, Transformers, and
random combinations of linear layers. In total, we create 2,820
diverse DNN architectures. These models vary in network
depth, ranging from the shallowest with 2 layers (e.g., 1
convolutional layer + 1 fully connected layer) to the deepest
with 152 layers (e.g., ResNet-152). We allow the host to select
the optimized layer implementations, leading to variations in



the same layers. For each model, we consider five commonly
used input sizes (299x299, 224x224, 192x192, 162x162,
128 x128), each with three channels. We select the batch size
randomly from 64, 128, 256, 512, and 784. The training and
test datasets are collected over all five GPUs.

Hybrid Training Dataset Collection (DRAM + EM). Out
of the 2,820 architectures, we randomly selected 2,560 for
training. To reduce data collection overhead, we employ our
hybrid training set collection approach (§IV-B). We collect
DRAM traces from 2,300 of these architectures for pre-
training, and EM signals from the other 260 architectures for
fine-tuning. DRAM traces and ground truth layer labels were
collected using NVIDIA Nsight at a 10 KHz sampling rate to
match the downsampled EM signal [56].

Test Set Collection (EM). The remaining 260 random DNN
architectures are used for testing, and EM signals are collected
during their inference. As all these models are distinct, the
test architectures are unseen by the trained reconstruction
engine. On average, EM acquisition takes 0.12 seconds with a
standard deviation of 0.09 seconds, enabling fast side channel
collection and preserving the stealth of the attack. We evaluate
ModelSpy’s robustness under varying distances (§V-CI)), wall
conditions (§V-C2)), DNN libraries (§V-C3), EM interference
(§V=C3), and cross-GPU scenarios (§V-C2).

3) Performance Metrics: We define two metrics to evaluate
layer segmentation performance and one metric to assess
hyperparameter estimation accuracy. (1) Layer Segmentation
Accuracy: The percentage of time-steps in the EM signal
that are correctly classified according to their ground truth
layer labels. (2) Normalized Levenshtein Distance (NLD):
The Levenshtein edit distance measures the dissimilarity be-
tween the predicted and ground truth layer sequences. NLD
normalizes this distance by the length of the ground truth
sequence [57]], [S8]]. A lower NLD indicates better alignmenﬂ
(3) Hyperparameter Accuracy: The percentage of estimated
hyperparameters that match their ground truth values.

B. ModelSpy Overall Performance

We evaluate ModelSpy on five GPUs and 260 unseen DNN
architectures, comparing it to the state-of-the-art baseline.

1) Baseline Selection: Most existing works rely on the clas-
sification of seen architectures, rendering them inapplicable to
unseen DNN architectures and unsuitable for direct compari-
son with ModelSpy [40]. Therefore, we select the state-of-the-
art near-field EM leakage-based architecture snooping attack
that can identify unseen architectures as our baseline [8].
As the original baseline operates on clean, millimeter-range
signals, we apply ModelSpy’s noise removal module to adapt
it to far-field signals. To ensure a fair comparison, we train
and test the baseline using the same sets of EM signals that
were used to evaluate ModelSpy.

3The edits include insertions, deletions, and substitutions. For example, if
the ground truth layer sequence of a two-layer CNN is (Conv, BN, ReLU,
MaxPool, Conv, BN, ReLU, FC) and the predicted sequence is (Conv, BN,
ReLU, MaxPool, Conv, BN, ReEd, FC), then NLD = 1/8 = 0.125.
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Fig. 13: Figure depicts (a) ModelSpy’s overall layer segmen-
tation accuracy and (b) the comparison with baseline.

2) Layer Segmentation: We first present ModelSpy’s overall
layer segmentation performance. As shown in Figure[[3(a), the
individual layer accuracy for each GPU is displayed, along
with the average accuracy across GPUs for each layer type.
ModelSpy achieves accuracy exceeding 92.3% for most layer
types, except four layers: Linear, BatchNorm, AvgPool, and
Add. These lower accuracies can be attributed to two primary
factors. First, there is an imbalance in the dataset, such as the
fewer instances of AvgPool compared to MaxPool. Second,
some layers, like Linear and Add, have shorter execution dura-
tions (tens of milliseconds), making them harder to distinguish.
Overall, ModelSpy achieves an average accuracy of 97.6%
across the entire dataset, highlighting ModelSpy’s effective-
ness across all five GPUs on unseen architectures. We further
compare ModelSpy to the baseline in Figure [T3(b), where
the baseline achieves only 87.1% accuracy, i.e., ModelSpy
outperforms baseline by 10.5%. The superior performance
of ModelSpy over baseline is attributed to two primary
factors. First, ModelSpy’s reconstruction engine outperforms
the baseline in handling noisy EM sequences by leveraging
global contextual information, thereby enhancing performance.
Second, the scalability of the baseline is limited by its la-
borious training data collection, which fails to assemble a
sufficiently large and diverse dataset to capture real-world
implementation variations.

3) Layer Topology Reconstruction: We investigate the simi-
larity of layer topology reconstructed based on the ModelSpy’s
layer segmentation results compared to the ground truth layer
topology. We use NLD (defined in as the metric, where
a smaller value indicates better performance. We present the
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Fig. 14: Figure depicts (a) ModelSpy’s NLD performance for
different popular DNN architectures.

NLDs for variants of five widely used network architectures
in Figure @a). On AlexNet, VGG, and BERT variants, the
average NLDs are 0.046, 0.079, and 0.093, respectively —
all below 0.1. ResNet poses more challenges, particularly
with its higher number of layers and complex topology (e.g.,
skip connections). However, ModelSpy achieves NLDs of
0.15 and 0.20 for ResNet-50 and ResNet-101, respectively,
indicating that ModelSpy can reconstruct these layer topologies
with over 80% similarity even in these challenging cases.
In Figure [T4[b), we further compare the NLD of ModelSpy
against the state-of-the-art baseline. ModelSpy achieves an
average NLD of 0.14, reducing the baseline’s NLD of 0.49
by 71%, demonstrating significantly superior performance.
4) Hyperparameter Estimation: We now assess the hyper-
parameter estimation performance of ModelSpy. Different net-
work types have distinct hyperparameter sets. For example, in
CNNgs, the Conv and Pool layers depend on kernel size, while
Transformer layers require an accurate estimation of the num-
ber of attention heads and hidden size. The results presented in
Figure [T5]a) indicate that ModelSpy achieves hyperparameter
estimation accuracy above 89.6% for CNN and Transformer
layers. The accuracy for Linear layers is slightly lower at
84.2%, likely due to the short duration of these layers when
the output dimensions are small, complicating hyperparameter
estimation. The LSTM model exhibits the lowest accuracy at
78.3%, primarily because each LSTM layer is composed of
many small kernel operations, with each operation being brief.
In contrast, CNNs and Transformers use larger kernels that
process data in parallel, with each kernel spanning a longer
duration, making the feature more distinct. This phenomenon
is exacerbated on certain GPUs that produce noisier signals,
further reducing accuracy. Overall, ModelSpy achieves an
average accuracy of 94.0% across the entire dataset. Finally,
Figure [I3[b) shows that ModelSpy outperforms baseline by
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Fig. 15: Figure depicts ModelSpy’s overall performance on
hyperparameter estimation.
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Fig. 16: Figure depicts performance comparison between
ModelSpy’s reconstructed architecture and original victim’s
architecture, with A indicating the performance gap.

14% on average, demonstrating its superior effectiveness in
fine-grained hyperparameter estimation.

5) Effectiveness of Reconstructed Architecture: Using the
sniffed layer and hyperparameter information, attackers can
reconstruct the full DNN architecture of the victim. To evaluate
the quality of the reconstructed architectures, we assess their
performance on the same task as the victim DNN. We tested
four networks—VGG, AlexNet, ResNet-50, and ResNet-101—
all for CIFAR-10 image classification [59]]. These networks
were treated as black-box models and reconstructed from
their GPU EM signals. For a fair architecture comparison, we
used the same training dataset, number of training epochs,
and training hyperparameters like optimizer, as the original
models. As shown in Figure [T6] the reconstructed networks
closely match the performance of the original models, even
for deep networks like ResNet-101.
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Fig. 17: Figure depicts ModelSpy’s performance under differ-
ent distances.
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Fig. 18: Figure depicts ModelSpy’s performance under differ-
ent types of walls.

C. Differing Experimental Conditions

We evaluate ModelSpy’s performance across several factors
using a representative GPU, the NVIDIA RTX 3060 Ti. All
experiments use the same trained model based on data from
the RTX 3060 Ti. For each condition, ModelSpy is tested on
100 randomly sampled unseen network architectures.

1) Varying Distances: We assess ModelSpy’s performance
at varying distances up to seven meters from the victim
host’s exterior side panel, where the EM sniffer is concealed
in a backpack. As the distance increases, the SNR of EM
signals decreases. As shown in Figure [T7(a) and (b), Mod-
elSpy achieves a layer segmentation accuracy above 86.7%
at five meters, decreasing to 42.3% at seven meters. For
hyperparameter estimation, the accuracy at five meters is
81.7%, reflecting only a 6.7% decrease compared to the zero-
meter scenario. Overall, ModelSpy remains effective up to six
meters. ModelSpy’s six-meter working distance represents a
significant improvement over the state-of-the-art baseline [§],
which requires the sniffer to be positioned within millimeters
of the GPU power cable. ModelSpy’s long-range capability
stems from its ability to perform fine-grained analysis on noisy
EM radiations and overcome scalability challenges, making
ModelSpy a substantially more practical and stealthy attack.

2) Cross-Wall Conditions: ModelSpy is capable of oper-
ating as a through-wall side-channel attack. We assess three
types of walls: glass, wood, and concrete. The experimental
setup for the concrete wall is shown in Figure [T2] where the
attacker is positioned in an adjacent room with the EM sniffer
hidden in a backpack. The attack results are presented in
Figure [T8] Layer segmentation accuracy remains above 90.1%
across all conditions, while hyperparameter estimation accu-
racy is lowest behind the concrete wall at 85.7%, compared to
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Fig. 19: Figure depicts ModelSpy’s performance under differ-
ent DNN libraries.
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Fig. 20: Figure depicts ModelSpy’s performance under ambient
EM interference.

88.4% with no wall. These results demonstrate that ModelSpy
can effectively perform even through walls, making the attack
highly stealthy.

3) Impact of Different DNN libraries: We evaluate the
scalability of ModelSpy across two widely used DNN libraries,
PyTorch and TensorFlow. The results, shown in Figure [T9a)
and (b), reveal that cross-library testing (e.g., training on Py-
Torch and testing on TensorFlow) results in reduced accuracy.
This is due to differences in library-specific implementations
and runtime optimizations (i.e., Challenge 2), causing a do-
main shift. However, we show that ModelSpy can effectively
mitigate the domain shift by training on both libraries,
achieving comparable results. Notably, this strategy incurs
minimal overhead because of ModelSpy’s scalable training
scheme with automated data collection.

4) Ambient EM Interference: All previous evaluations were
conducted in the presence of typical EM interference from
electronic components like power supply units, memory, and
CPU. We now assess the impact of external ambient noise
on ModelSpy, specifically from a WiFi access point (AP)
whose frequency band is close to ModelSpy’s monitoring 5
GHz band. We introduced a Xiaomi AX6000 AP operating on
channel 36 with a center frequency of 5.18 GHz, the closest
available to 5 GHz on the AP, and varied its distance from the
victim host. During testing, a nearby node connected to the
AP was downloading at approximately 240 Mbps. As shown
in Figure 20| placing the AP one meter away reduced layer
segmentation accuracy by 8.7% and hyperparameter estima-
tion accuracy by 7.7%, indicating notable interference when
the AP is in close proximity. However, under conditions of
weaker interference, such as when the AP was positioned two
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Fig. 22: Figure depicts module evaluation results.

meters away, the attenuated interference signal was effectively
mitigated by ModelSpy’s noise removal module, resulting in
only minimal performance degradation.

5) Cross-GPU Performance: To assess the transferability
of ModelSpy on unseen GPUs, we conducted cross-GPU
experiments where the reconstruction engine was trained on
one GPU and tested on four different GPUs, as shown in Fig-
ure 21fa) and (b). We observe that ModelSpy performs better
when training and testing occur on same-generation GPUs
(e.g., training on RTX 3060 Ti and testing on RTX 3070)
compared to cross-generation scenarios. For layer segmenta-
tion, the average cross-generation accuracy is 70.5%, while
within the same generation (30 and 40 series), the accuracy
increases to 85.5% and 91.6%, respectively. Hyperparameter
estimation shows similar trends. This finding demonstrates
attack feasibility even when the training and testing GPUs
are not identical, thereby lowering the attack barrier.

6) Ablation Study on Transfer-Learning Module: We eval-
uate the impact of pre-training with DRAM by comparing
ModelSpy with and without this module. Specifically, we
assess the performance when the model is only fine-tuned
with EM signals, i.e., trained directly from scratch using EM
signals. The results, shown in Figure @a) and (b), indicate
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TABLE III: Table shows attack success rates using different
surrogate architectures. ModelSpy’s reconstructed architecture
can effectively enhance subsequent adversarial attacks.

D Surrogate Victim Architecture
Architecture "1 Net VGG Resnet3d  Resnetl0l VAT
AlexNet 0.47 0.26 0.25 0.29 0.20
o VGG 0.17 0.49 0.49 0.49 0.20
= Resne3d 0.11 0.36 0.68 0.56 0.13
< Resnetl01 0.07 0.40 0.60 0.58 0.12
(E) ViT 0.07 0.06 0.10 0.14 0.59
Ensemble 0.17 0.31 0.42 0.41 0.24
ModelSpy 0.44 0.49 0.64 0.56 0.59
AlexNet 0.52 0.48 0.47 0.42 0.38
s VGG 0.27 0.49 0.57 0.49 0.22
= Resnet34 0.23 0.48 0.74 0.63 0.18
gg Resnet101 0.21 0.38 0.68 0.67 0.22
B ViT 0.15 0.15 0.18 0.16 0.56
U Ensemble 0.27 0.39 0.52 0.47 0.31
ModelSpy 0.53 0.51 0.74 0.66 0.53

that the pre-training is effective across all five GPUs. The
average accuracy of layer segmentation across GPUs increases
from 92.5% to 97.6%, while hyperparameter estimation per-
formance shows a significant increase from 86.2% to 94.2%,
thereby demonstrating the overall effectiveness of pre-training
with DRAM to enhance scalability for huge architecture space.

D. Case Study: Adversarial Attacks on Image Classification
with ModelSpy

As discussed in §[I-A] access to the DNN architecture sig-
nificantly improves the effectiveness of black-box adversarial
attacks. In this case study, we demonstrate how ModelSpy’s
reconstructed architectures can enhance evasion attacks on
image classification tasks.

We consider a typical black-box setting where the attacker
has no access to the victim model’s internals and must
rely on surrogate models. While conventional approaches use
randomly selected or ensemble-based surrogates, an attacker
equipped with ModelSpy can instead use the reconstructed
architecture to train a high-fidelity surrogate, leading to more
effective adversarial examples. We evaluate five widely used
victim architectures — AlexNet, VGG, ResNet-34, ResNet-101,
and Vision Transformer (ViT) — on two benchmark datasets:
CIFAR-10 and CIFAR-100 [39], each with 10,000 randomly
selected test images spanning 10 and 100 classes, respectively.

Adversarial examples are crafted using the Fast Gradient
Sign Method (FGSM) [60] with perturbation magnitude ¢ =
0.03. Table [Tl reports the resulting attack success rates, where
higher values indicate more effective attacks. Results show
that using ModelSpy’s reconstructed architectures improves
attack success rates by an average of 22.8% on CIFAR-10 and
19.8% on CIFAR-100 compared to ensemble-based surrogates.
Notably, these success rates are within 4% of those achieved
using the exact architecture, demonstrating ModelSpy’s effec-
tiveness in enhancing black-box adversarial attacks.
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Fig. 23: Figure depicts EM signals from the GPU when run-
ning mainstream LLMs. ModelSpy can potentially extend to
extracting LLM architectures used in black-box applications.

VI. DISCUSSION

We discuss potential limitations and future directions for
ModelSpy’s attack, as well as attack mitigation strategies.

A. Deployment Considerations

Limitation on Non-conventional Architecture Designs. Cur-
rently, ModelSpy can accurately identify previously unseen
architectures as long as their layer types and hyperparameters
are present in the training data. However, non-conventional
architecture designs (e.g., layers with even-sized kernels) that
are not included in ModelSpy’s training dataset are difficult
to extract. This limitation is also noted in prior work [61].
Nevertheless, ModelSpy adopts a scalable design, specifically
through its hybrid training set collection, which allows efficient
incorporation of additional data to mitigate this limitation.
Impact of Operator Fusion. Some DNN frameworks support
fusing consecutive operators for optimization during model
inference, such as combining addition and ReLU into a
single kernel. To address this, we can introduce combined
layer classes (e.g., "Conv+ReLU”) during layer segmentation,
enabling ModelSpy to work seamlessly with operator fusion.
Our experiments show minimal performance degradation, with
occasional misidentification of the BatchNorm layer due to
subtle differences between fused and non-fused versions.

B. Extension of ModelSpy

Attacking Large Language Models. ModelSpy is the first
architecture snooping attack capable of targeting Transformer-
based architectures, which are backbones of large language
models (LLMs). As demonstrated in Figure ModelSpy
successfully attacks BERT, a typical LLM using stacked
Transformer encoders [55]. ModelSpy can also naturally
extend to other LLMs such as ChatGPT and Llama, which
employ Transformer decoders. Their components like atten-
tion and feedforward layers are detectable by ModelSpy, as

evidenced in Figure 23] A potential challenge arises in multi-
GPU setups, often used for large-scale LLM inference, where
pipeline parallelism is employed to distribute the model across
multiple GPUs. This division generates distinct EM signals
across GPUs corresponding to different layers or operations.
To address this, ModelSpy could incorporate multiple receiving
antennas, enabling the isolation of EM signals from each
individual GPU. We leave this exploration for future work.
Attacking Edge DNN infrastructures. As edge DNN in-
ference evolves, it introduces a new attack surface for
ModelSpy. Recent studies suggest that DNN inference could
be offloaded to smart infrastructure, such as lamp posts [62],
[63]. Such roadside infrastructures may easily fall within
ModelSpy’s attack range. Specifically, in open environments
with less surveillance, attacks from longer distances become
possible with the use of larger antennas. For example, we
conducted a preliminary experiment with a parabolic antenna,
which successfully operated from over 10 m.

C. Countermeasures

We suggest two solutions to mitigate ModelSpy’s attack.
First, one could leverage EM jamming techniques that intro-
duce noise to interfere with the target GPU’s EM signals. As
discussed in a WiFi AP placed with proximate distance
can reduce ModelSpy’s reconstruction accuracy, indicating its
effectiveness for jamming. However, the GPU’s EM leakage
signal is wide-band — covering 5-6 GHz range (§III-B)), hence
jamming this frequency band can disrupt communication, e.g.,
WiFi transmissions. An alternate mitigation strategy is obfis-
cation where other dummy DNN inferences concurrently run
on the GPU, thereby masking the leakage from the inference,
executing the DNN architecture of interest. This method has
been shown to be effective in curbing EM side channels in
a prior work [33]]. However, such strategies can significantly
increase the DNN inference time, leading to financial losses
for Al companies.

VII. RELATED WORK

We now present closely related work with ModelSpy.
Side-Channel-Based DNN Architecture Snooping. Prior
work falls into two categories: co-location-based and physical
leakage-based methods. Co-location-based attacks require the
attacker to share system resources with the victim, leveraging
cache analysis, bus snooping, or performance API monitor-
ing [20], [211, [22], [[7], [9], [58], [64], [65]. Such logical ac-
cess may raise suspicion and can be effectively mitigated [23]],
[24], [25]. In contrast, physical-leakage attacks exploit power
or EM leakages [27], [26], [L3], [40], [39], [61], [66], [67].
ModelSpy’s unique contribution is the first to achieve fine-
grained reconstruction on unseen architecture with long-range
and through-wall capabilities. Our cross-layer analysis further
ensures ModelSpy’s scalability to real-world DNN instances.
EM Side-Channels. Prior work has demonstrated the use
of EM leakages to recover a wide range of sensitive infor-
mation, including screen content [68]], passwords [69], [70],
fingerprints [[71], cryptographic keys [[72], audio 73], [74] and



application activity [[75], [76l]. EM signals have also been used
to detect hidden devices such as spy cameras, microphones,
and GPS tracker [77], [78], [79] Among these, one prior
study leveraged GPU dynamic voltage and frequency scaling
(DVFS) patterns for long-range keystroke inference [80]. In
contrast, ModelSpy bypasses binary-like DVFS patterns and
instead leverages the amplitude modulation of GPU EM leak-
age, allowing fine-grained extraction of DNN architectures.

VIII. CONCLUSION

We propose ModelSpy, a novel DNN architecture snooping
attack, based on the far-field EM leakage signals emanating
from GPUs while conducting DNN inference. We design
and implement ModelSpy, as well as perform a real-world
evaluation on five GPUs over diverse unseen DNN architec-
tures. ModelSpy achieves high layer segmentation and hyper-
parameter estimation accuracy, and can effectively enhance
the subsequent black-box adversarial attacks. Furthermore,
ModelSpy is both stealthy and scalable, as it can operate from
a distance and through walls. We hope this work encourages
the research community and GPU vendors to consider this
potential threat and explore appropriate countermeasures.
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APPENDIX A
MODELING RADIATIVE GPU EM EMANATION

GPUs unintentionally emit EM signals that can be used
to infer the DNN architecture. These emanations consist of
carrier signals, generated by digital components including
voltage regulators, memory clocks, and memory refresh sig-
nals [34], and baseband signals, which are modulations
resulting from GPU computing and memory activity.

The resulting EM leakage is wideband in nature, owing
to both the carrier and the baseband signals contributing to its
frequency spectrum [34]], [35]], [36]. First, it is common for the
carrier signals to spread out across a broad frequency range.
For instance, many periodic activities, such as the switching
of voltage regulators, do not require precise timing and are
typically generated by lower-cost but less stable oscillators.
Moreover, techniques like spread-spectrum clocking (SSC) are
applied to deliberately widen the clock signal’s frequency
range to reduce electromagnetic interference. On the other
hand, the baseband signal also exhibits a wideband character-
istic, driven by step-function-like transitions in GPU memory
access and computational activities. The combined wideband
nature of both the carrier and baseband signals results in
complex EM leakage patterns that can be used to reconstruct
the DNN architectures.

While multiple sources contribute to GPU EM leakage, we
use SSC as a representative wideband EM source to model
the amplitude modulation process in DNN inference [37]. The
carrier signal generated by SSC can be expressed as:

Scarrier () = €OS (27rfclkt + ﬂ sin(27rfmt)> , 4)

where f. is the frequency of the base clock, and f,,, and A f
represent the SSC modulation frequency and peak frequency
deviation, respectively. The spectrum of the SSC signal can
be mathematically derived as:

A
Scarrier(f) = Z JIn <ff> [5(f_fclk+nfm)_5(f_fclk_nfm):|7
! 5)

where J,,(+) is the Bessel function of the first kind, and J(-)
denotes the Dirac delta function. Theoretically, the energy of
an SSC signal is non-zero only at the frequencies fe; +nfin,
forming a series of discrete sub-clock signals. However, in
practice, a continuous spectral response is observed between
these discrete frequencies, with the sub-clock frequencies
appearing as peaks. We observe that all significant spectral
peaks are confined within a 10 MHz frequency range on the
lower sideband of f., due to the band-pass filtering properties
of the clock generator. Consequently, the SSC signal can be
re-expressed as:

N

sca_rrjer(t) = E Assc’ne-727rfsac,nt7
n=0

(6)
where Agscp and foscn = fer —nfm represent the amplitude
and frequency of the n-th sub-clock, respectively. Here, IV
denotes the total number of sub-clocks presented.



We now consider the baseband signals spnn(t) caused by
computing and memory accesses in DNN inference, which can
be represented as:

M
spaN(t) = Z A ult —tm), (7
m=1

where A,,, denotes the amplitude of the m-th memory access
step, t,, represents the time at which the m-th access occurs,
and u(t — t,,,) is the Heaviside step function that models the
abrupt changes caused by the memory access. Therefore, the
modulated signal sgm(t) can be written as:

SEM(t) = scarrier(t) : SDNN(t)
M N
2nf (8)
= Z Z AmAssc,n U(t - tm) . €J27rfssc="t.
m=1n=0

The frequency domain signal can be mathematically derived
as:

SEM(f) = F[SEM(t)}
M N 50
= Z Z AmAssc,n/ U(t - tm)emﬁf”cv"te*i%fftdt
m=1n=0 —00
M N 50
= Z Z A”LAssc,n/ ’U,(t - tm)eimw(f*fssc,n)tdt
m=1n=0 —00
M N
=273 AnAusenFlult = tm))(f = fuscn)
m=1n=0

A Agse e 2= Fssendtn Fly(](f — fosen)

€))

This formulation illustrates how the GPU EM signal, sgm(f),
disperses across the wideband spectrum due to the intrinsic
hardware execution. This phenomenon is then validated ex-
perimentally. We observe that although all five of our GPUs’
memory clocks exceed 6 GHz—the upper frequency limit of
the USRP B210—the same DNN inference is detectable across
center frequencies ranging from 5 to 6 GHz, with sgm(f) span-
ning a wide frequency band. We specifically selected 5 GHz
as the center frequency because it lies outside the 5.15 to 5.85
GHz range typically utilized by Wi-Fi, thereby minimizing
potential interference with ambient wireless communication
signals.

M=
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3

3
=}

2

M=
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3

3
=}

1

1
: (25(f = fssem) + 270(f — fasem)

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides the implementation, dataset, and eval-
uation scripts for the paper. It allows reproduction of the main
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experimental results, including Figures 13, 14, 15, 17, and 18
in the paper.

1) How to access: The artifact is available at https://doi.
org/10.5281/zenodo.17080118. It contains:

o Source code for the (under dnn-prediction/)

o Dataset (in data/)

¢ Conda environment file (environment .yml)

« Automation script for evaluation (auto-eval. sh)

2) Hardware dependencies:
o NVIDIA GPU with larger than 4GB memory
3) Software dependencies:

o Linux OS (tested on Ubuntu 20.04)
o Conda and Python

4) Benchmarks:
o EM signal samples with labels in data/

B. Artifact Installation & Configuration

1. Unzip data.zip and move the data/ folder into the
project root:

unzip data.zip
mv data modelspy-artifact/

2. Create the conda environment:

conda env create —f environment.yml
-p /home/user/anaconda3/envs/
env_name

3. Editdnn-prediction/configs/meta_data.yaml:

root_data_path: /path/to/modelspy—-artifact

C. Experiment Workflow
From the dnn-prediction/ directory, run:

bash auto-eval.sh

This script will run all experiments and write the results to:

e eval-results/model-eval-results.txt
e eval-results/comparison.txt

D. Major Claims

(C1): ModelSpy’s effectiveness on Layer Segmentation
across all five GPUs (corresponding to Section V-B2 and
Figure 13). Proven by (E1).

(C2): ModelSpy’s effectiveness on Layer Topology Re-
construction (corresponding to Section V-B3 and Figure
14). Proven by (E2).

(C3): ModelSpy’s effectiveness on Hyperparameter Esti-
mation (corresponding to Section V-B4 and Figure 15).
Proven by (E3).

(C4): ModelSpy’s long-range effectiveness (correspond-
ing to Section V-C1 and Figure 17). Proven by (E4).
(CS): ModelSpy’s cross-wall effectiveness (corresponding
to Section V-C2 and Figure 18). Proven by (ES).


https://doi.org/10.5281/zenodo.17080118
https://doi.org/10.5281/zenodo.17080118

E. Evaluation

1) Experiment (EO): [Produce all the results] [20 min
human-time + 1.5 GPU hour]

[Preparation]: Complete environment setup as above.

[Execution]: Run auto-eval.sh, which produces all results
for E1 to ES5. After execution, all results are logged in eval-
results/model-eval-results.txt. We provide the expected results
in eval-results/comparison.txt, which corresponds to the results
shown in our paper.

2) Experiment (EI): [5 min human-time]

[Results]: Lines 1-134 (“Layer Average Acc” and
“test_layer_acc_*” items) match those in comparison.txt. All
line numbers refer to entries in the file eval-results/model-
eval-results.txt.

3) Experiment (E2): [5 min human-time]

[Results]: Lines 171-215 match those in comparison.txt.

4) Experiment (E3): [5 min human-time]

[Results]: Lines 1-134 (“Hyperparam Average Acc” and
“test_hyperparam_acc_*” items) match those in compari-
son.txt.

5) Experiment (E4): [5 min human-time]

[Results]: Lines 217-272 match those in comparison.txt.

6) Experiment (E5): [5 min human-time]

[Results]: Lines 273-294 match those in comparison.txt.

F. Notes

Execution time may vary depending on the GPU model
used. Please ensure that all configuration files use absolute
paths to prevent file resolution errors. For further details, refer
to the README.md provided in the repository.
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