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ABSTRACT
GPU cryptojacking is an attack that hijacks GPU resources of
victims for cryptocurrency mining. Such attack is becoming
an emerging threat to both local hosts and cloud platforms.
These attacks result in huge economic losses for the victims
due to significant power consumption by cryptomining ap-
plications. Unfortunately, there are no adequate solutions
to detect such attacks. In this paper, we propose MagTracer ,
a novel GPU cryptojacking detection system that leverages
magnetic leakage signals emanating from GPUs. We make
a key observation that GPUs emanate a distinct magnetic
signal while mining, which can be attributed to the core
feature of all cryptomining algorithms (as they are compute-
intensive as well as memory-bounded). We design and im-
plement a proof-of-concept detection system to demonstrate
MagTracer’s feasibility. We evaluate MagTracer on 14 het-
erogeneous GPU models and achieve a high average true
positive rate of over 98% and a low false positive rate below
0.7% in all cases. Furthermore, our comprehensive evaluation
confirms that MagTracer is scalable across different mining
applications and robust against several targeted attacks.

CCS CONCEPTS
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countermeasures.
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1 INTRODUCTION
Reported cases of cryptojacking – where remote attackers
access victims’ computing resources to stealthily mine cryp-
tocurrencies – are increasing significantly. According to a
2021 Linux Threat Report, cryptojacking is the largest mal-
ware family affecting Linux servers, contributing to over 24%
of all threats [46]. Furthermore, in 2022, cryptojacking cases
increased by 269% in the financial sector alone [16].
Large costs involved in hardware maintenance for min-

ing is a primary reason for cryptojacking [19, 31]. As a re-
sult, attackers target victims’ machines, most notably, graph-
ics processing units (or GPUs) due to their high perfor-
mance in terms of hash rates, which is crucial for crypto-
mining1 [49, 50]. Furthermore, such cryptojacking malware
has been shown to be easily disseminated to GPUs through
modified software such as NVIDIA drivers and Kubernetes
clusters [8, 75].
The consequences of GPU cryptojacking are detrimen-

tal for the victims as they result in significant costs due to
their immense power consumption [77]. In addition, cryp-
tojacking attacks caused loss of revenue for businesses due
to degraded GPU performance, in addition to reduced GPU
lifespan due to overheating [51, 69]. Meanwhile, the thriving
AI industry has contributed to the increased accessibility of
GPUs for cryptojacking attacks [28, 66]. Hence, developing
cost-effective measures to defend against strong attackers is
crucial in mitigating these risks.
1We use cryptojacking, cryptomining, and mining interchangeably.
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Figure 1: Figure depicts our cryptojacking attack detec-
tion scenario, whereMagTracer’s hardware is placed
in contact with the victim’s GPU machine. When a re-
mote attacker executes cryptojacking malware on the
victim’s GPU,MagTracer detects its uniquemining sig-
nature from the captured magnetic signals and alerts
the user.

There have been several efforts from academia and in-
dustry to detect cryptojacking. Some prior works suggest
maintaining a predefined blacklist of malicious sites, whose
requests can be automatically blocked [1, 35, 79, 83]. How-
ever, such an approach is not scalable due to the increas-
ing number of rapidly evolving threats [44]. Researchers
also explore detecting cryptojacking on CPUs by monitor-
ing features such as CPU cache utilization and memory
events [34, 41, 43, 53, 67, 78]. However, these approaches
are not applicable to GPUs due to differences in both the pro-
cessor architecture and the types of cryptojacking programs.
Furthermore, even these attempts are prone to common eva-
sion attacks such as setting up proxies, dynamic domain
names, or encrypted communication [53].

The aforementioned shortcomings lead us to the following
research question: Can we design a novel GPU cryptojacking
detection system that is - (1) scalable to unseen cryptojacking
malware, (2) scalable across different GPU models, as well as
(3) resilient to attacks from powerful remote adversaries? To
this end, we proposeMagTracer , which utilizes the phenome-
non that GPUs, when performing mining, emanate distinct
magnetic leakage signals. The leakage signal stems from
the varying current transmitted through the GPU power
lines. Specifically, we identify that it is the compute-intensive
andmemory-bounded properties of cryptomining algorithms
that result in their distinct mining leakage patterns. Figure 1
illustrates our cryptojacking detection scenario, in which a
remote attacker executes cryptojacking malware on a vic-
tim’s GPUmachine without the user’s knowledge.MagTracer
utilizes a small magnetic sensor hardware placed in contact

with the machine’s exterior housing to detect the presence
of any distinct mining signature in the captured signal and
ultimately alerts the victim about potential cryptojacking.
Designing MagTracer comes with two main challenges.

The first challenge is achieving robustness to noise arising
from external sources such as adjacent electronic compo-
nents (CPUs), and internal sources such as programs run-
ning alongside cryptomining, that significantly affect the
magnetic leakage signals. Furthermore, the second challenge
is that the mining signature is highly GPU-dependent. In
particular, we observe that the mining leakage frequency
changes with the GPU model under test. Hence, developing
a detection technique that works across different GPU models
with varying architectures and specifications is challenging.

We solve the aforementioned challenges in the following
manner. We incorporate different signal processing tech-
niques including outlier removal and signal detrending to
remove the effects of external and internal noise sources.
Subsequently, we extract GPU-aware features by, first, sys-
tematically identifying a correspondence between the GPU
specifications and the magnetic leakage signals. In particular,
we observe that given the GPU model, we can estimate the
magnetic leakage frequency obtained during mining, which
we refer to as the mining frequency. We then extract GPU-
aware features such as the peak prominence, based on the
identified mining frequency. Finally, we further improve the
robustness of internal noise sources by aggregating features
across multiple magnetic signals, which we leverage to train
our support vector machine (SVM) classifier.
MagTracer has several advantages. First, as MagTracer is

designed and implemented as standalone hardware that is
physically separated from the host device and lacks network
access, it is unaffected by powerful remote attackers with
unconstrained access to the victim’s host. Second,MagTracer
is easy to deploy as it does not require any bulky hardware.
Specifically, we implement our proof-of-concept MagTracer
hardware utilizing a lost-cost magnetic sensor (costing only
about 3 USD) for magnetic acquisition and a Raspberry Pi
for post-processing. If deployed, MagTracer hardware would
have a smaller form-factor at a cheaper cost.
We evaluate MagTracer on 14 GPU models by capturing

magnetic signals of total duration over 23 hours across sev-
eral cryptomining and benign (i.e., non-mining) tasks. We
comprehensively evaluateMagTracer’s performance over dif-
ferent mining applications, sensor locations, and background
applications. Additionally, we perform a detailed security
analysis by subjecting MagTracer’s detection to strong anti-
detection mechanisms such as throttling that attenuate the
signal-to-noise ratio (SNR) of the mining leakage signals.
Overall, MagTracer achieves high average true positive rates
above 98%, and low false positive rates below 0.7% in all cases,
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Figure 2: Figure depicts Ethash, a typical GPU mining
algorithm, consisting of two compute-blocks and 64
memory-blocks.

Algorithm Ethash Etchash KawPow ProgPow FiroPow
Hash Rate 32 Mh/s 32 Mh/s 21.5 Mh/s 21.5 Mh/s 21.5 Mh/s
Table 1: Table depicts the hash rates (measured in
hashes per second or h/s) for popular cryptomining
algorithms on an NVIDIA GTX 1080Ti GPU.

demonstrating its effectiveness across five GPU architectures
from popular vendors such as NVIDIA and AMD.

2 BACKGROUND
This section presents the background of cryptomining, work-
ing of GPUs, and the causes of GPUs’ magnetic leakage.

2.1 Cryptomining on GPUs
We provide an overview of cryptomining and its unique
features that lead to distinct magnetic leakage in GPUs.

Existing cryptocurrencies (e.g., EthereumPoW), are based
on blockchain technology, which rely on a consensus algo-
rithm to verify and add new transactions. One popular con-
sensus algorithm is Proof-of-Work (PoW), where distributed
nodes called miners solve cryptographic puzzles, specifically
hash functions, to add valid blocks to the blockchain. Hence,
cryptomining algorithms are computationally intensive
by design, and are typically executed on GPUs due to their
good performance. GPUs have high hash rates, i.e., the num-
ber of hashes that can be computed per second, making them
well-suited for cryptomining. Hash rate is dependent both on
the GPU model as well as the cryptomining algorithm, and
Table 1 enumerates the hash rates for common cryptomining
algorithms on NVIDIA GTX 1080Ti GPU.

In addition to being compute-intensive, GPU mining algo-
rithms are alsomemory-bounded by design, i.e., the hash
functions involve significant amounts of memory readings,
making memory the major bottleneck in execution time [32].
This memory-bounded feature is intended to make mining
resistant to Application-Specific Integrated Circuits (ASICs),
hence preventing domination of large players [4, 80].

Figure 2 depicts the high-level working of a popular crypto-
mining algorithm, ETHash, used formining EthereumPoW [20].
ETHash is a modified version of SHA-3 hash function, specifi-
cally consisting of two SHA-3 hash functionmodules (compute-
block), and 64 random table lookups (memory-block) for each
run. In Section 3.3, we further explore how these compute
and memory blocks impact mining signature.

2.2 GPU Computational Model
GPUs are high-performance processors that follow Single
Instruction Multiple Data (SIMD) architecture, thereby en-
abling efficient computing through data-parallelism, making
them well-suited for cryptomining.

The mining algorithm is implemented as a GPU program
called a kernel. Upon execution, the kernel launches a large
number of parallel computing threads on the GPU. Threads
will be assigned to the hardware units of computation, known
as Streaming Multiprocessors (SMs) for execution. A GPU
has a scalable number of SMs. For example, the NVIDIA GTX
1080 Ti [54] has 28 SMs. The mining kernel will be executed
on all these 28 SMs. Each SM has its own set of resources,
such as registers and shared memory. As each thread re-
quires its own set of registers to execute, the total number
of registers determines how many threads (or hashes) can
be computed simultaneously on an SM. During mining, the
GPU scheduler will periodically assign threads to the SMs
for execution, which we refer to as thread assignment. In
Section 5.3, we elaborate on how the periodicity of these
thread assignments during cryptomining leads to its unique
mining signature.

2.3 Magnetic Emanations from GPU
As a typical electronic component, GPUs emit – high fre-
quency electromagnetic signals due to digital circuits (e.g.,
VRAM clocks), as well as low frequency magnetic signals
due to components such as power lines. The signals due to
the former are typically in the order of MHz or higher and
can be attenuated through shielding. Hence, in this work, we
explore low frequency magnetic signals, which are produced
as a side-effect of the electric current transmitted through
power lines connecting the GPU and the power supply unit.
Specifically, according to the Biot-Savart Law, the magnitude
of the magnetic field due to a long current carrying wire
with current 𝐼 can be described as – B =

𝜇0𝐼
2𝜋𝑟 , where 𝜇0 is the

magnetic constant, and 𝑟 is the distance from the wire [38].
During cryptomining, high magnitude currents are pro-

duced in GPUs (reaching up to 30A), which in turn result in
strong magnetic fields, on the order of 100𝜇𝑇 , in close prox-
imity to the GPU [13]. In this paper, we analyze these leaked
magnetic signals from GPUs for cryptojacking detection.
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Figure 3: Figure (a) depicts the side panel of the host
device equipped with a GPU.MagTracer’s setup is af-
fixed to its top panel; (b) depicts our setup’s zoomed-in
view which consists of a low-cost magnetic sensor (3
USD), an ADC, and a Raspberry Pi.
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Figure 4: Figure depicts that cryptojacking program
depicts a distinct mining signature in the frequency
domain, in comparison to representative non-mining
tasks, such as graphics and deep learning training.

3 FEASIBILITY STUDY
In this section, we verify the feasibility of GPU cryptojacking
detection using magnetic leakage signals.

3.1 Feasibility Setup
Our setup (Figure 3) consists of a test device (i.e., device with
a GPU), a DRV425 fluxgate magnetic sensor, which outputs
voltage proportional to magnetic field strength (sensitivity =
5mv/𝜇T), an ADS1263 analog-to-digital converter that dig-
itizes the magnetic signals at a sampling rate of 38.4 KHz,
and a Raspberry Pi 4B for post-processing [36, 37]. For our
feasibility study, we leverage a test device equipped with a
GTX 1080 Ti GPU.

3.2 Evidence of Mining Signature
We now verify if cryptomining applications are distinguish-
able from other applications executed on a GPU. For this
experiment, we capture magnetic signals when the GPU per-
forms cryptojacking, as well as four other tasks typically
performed on a GPU, namely, deep learning training, 3D

Mining Signature

Figure 5: Figure depicts the significance of both the
compute-intensive (CI) and thememory-bounded (MB)
components of the cryptomining algorithm, Ethash,
towards the occurrence of the mining signature.

graphics rendering, video decryption, and physics simula-
tion. From Figure 4, we observe that cryptojacking indeed
produces a unique magnetic signature, which we refer to as
mining signature, compared to all other tasks. In particular,
cryptojacking produces a distinct peak at around 1.5 kHz.
This experiment thus confirms our hypothesis that magnetic
signals can serve as a proxy for cryptojacking detection.

3.3 Cause for Distinct Mining Signature
Recall from Section 2.1 that cryptomining consists of both a
compute-intensive as well as a memory-bounded components.
We now perform experiments to verify their contributions
to the detected mining signature. In particular, we conduct
two preliminary experiments by separately removing the
compute-intensive and memory-bounded components of the
Ethash cryptomining algorithm. As depicted in Figure 5, we
observe that the mining signature disappears in the absence
of either, indicating the importance of both components in
generating the unique signature. Furthermore, this indicates
that non-mining applications with repetitive computations
are still unlikely to produce magnetic patterns similar to
mining due to the lack of a memory-bounded component
that is unique to cryptomining applications.

4 SYSTEM AND THREAT MODEL
We present the system and threat models of MagTracer .
SystemModel.The goal ofMagTracer is to leveragemagnetic
leakage signals to detect GPU cryptojacking in victim-owned
GPU hosts, such as personal computers and GPU servers.
To provide such detection, we require MagTracer to be –
(1) scalable to unseen mining programs, (2) applicable to
heterogeneous GPU models, and (3) resilient to powerful
remote attacks. To achieve this, we assume that the magnetic
sensor is placed in a standalone manner in close proximity
(within a few cm) of the target device’s exterior.
Threat Model. The attacker’s goal is to conduct profitable
cryptojacking activities by mining cryptocurrencies using
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Figure 6: Figure depictsMagTracer’s design overview.
(a) depicts Bootstrapping Phase, where we capture mag-
netic signals emanated by GPUs while executing min-
ing and benign programs to ultimately train a binary
classifier. (b) depicts Deployment Phase where we lever-
age the trained model to detect cryptojacking based on
magnetic samples from the GPU under test.

the victim’s GPU resources. The attacker’s capabilities in-
clude launching remote attacks, such as injecting crypto-
jacking malware into victim GPUs through modified soft-
ware [8, 75]. Advanced attackers are capable of bypassing
software-based defenses, e.g., in the past, they have bypassed
binary analysis-based defenses using obfuscation [53, 56].
Furthermore, in certain cases, attackers can exploit system
vulnerabilities to gain root privileges and disable all host
detection mechanisms [17, 18]. This underscores the sig-
nificance of MagTracer as a robust defense mechanism, as
state-of-the-art software-based defenses would be insuffi-
cient against such sophisticated attacks [29, 58, 61].

5 MAGTRACER DESIGN AND
IMPLEMENTATION

We now present MagTracer’s design and implementation.

5.1 Design Overview
MagTracer’s design enables the detection of cryptojacking
through the magnetic side-channel of GPUs, which consists
of two phases, namely the Bootstrapping phase and the De-
ployment phase, as shown in Figure 6. During the Bootstrap-
ping Phase, magnetic traces are collected from a sensor placed
on the external of a GPU to train a binary SVM classifier
that can differentiate between mining applications and be-
nign applications, such as gaming or video encoding. In the
Deployment Phase, the trained classifier is used to detect
cryptojacking events based on the magnetic leakage signals.

(a) Challenge 1: Low SNR Mining Signature

(b) Challenge 2: GPU-Dependent Mining Signature

GPU-Dependent Mining Signature

Signature Missing
Signature Present

Figure 7: Figure depicts the two design challenges: (a)
the mining signature has low SNR due to noise sources
(e.g., background applications), and (b) the mining fre-
quency is highly dependent on the GPU model.

The collected magnetic traces in both phases are first pre-
processed in the Noise Removal module (§5.2) to filter out
ambient and internal noises. Concurrently, the expected leak-
age frequency for mining, defined as mining frequency, is
estimated using GPU specifications in the Mining Frequency
Identification module (§5.3). The denoised signals and min-
ing frequency are then input to the Feature Extraction and
Aggregation module (§5.4) where features related to GPU
mining activity are extracted and aggregated across multiple
trials. Finally, the computed features are used for mining
detection in the Model Training and Inference module (§5.5).

Designing MagTracer involves two main challenges –
Challenge 1: Low SNRMagnetic Side-Channel. The mag-
netic side-channel is inevitably affected by both the external
and internal noise sources. The external noise sources re-
fer to the electronic components surrounding the protected
GPU, such as CPUs and power supply units, which emit
strong magnetic signals, thereby interfering with the mining
signature. The internal noise sources refer to the execution
of non-mining programs, such as graphics processing, in
parallel with mining applications. The magnetic signal due
to mining is altered because of GPU time-slicing, where each
application gets a time-shared access to the GPU. As a re-
sult, the signal-to-noise ratio (SNR) of the GPU magnetic
side-channel is low. Figure 7(a) illustrates how the mining
signature disappears to the noise floor when it is executed to-
gether with a graphics application. We address this challenge
in the Noise Removal (§5.2) as well as the Feature Extraction
and Aggregation modules (§5.4) modules.
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ing and (b) Pulse Noise Removal steps, in the Noise
Removal module.

Challenge 2: GPU-Dependent Mining Signature. In the
Feasibility section (§3.2), we demonstrate that mining pro-
grams result in a unique mining signature compared to non-
mining applications. However, we encounter a technical chal-
lenge in determining the optimal frequency band to monitor
as the mining frequency changes with the GPU model. We
illustrate this changingmining frequency on three GPU mod-
els in Figure 7(b). Hence, we address this challenge with the
Mining Frequency Identification module (§5.3), where-in we
systematically estimate the mining frequency given the GPU
specifications, and leverage this frequency to subsequently
learn GPU-aware features.

5.2 Noise Removal
This module takes as input the raw time-series data captured
from the magnetic sensor and performs several preprocess-
ing steps which are crucial to address external and internal
noise sources (i.e., Challenge 1), to finally output a denoised
signal. We list each of the steps, in order, below.
Signal Detrending. The collected magnetic signals are sub-
ject to transient level shifts, caused by the dynamic trans-
fer between different GPU processes (i.e., mining and non-
mining), as well as long-term level shifts caused by external
noises. To address this issue, as depicted in Figure 8(a), we
remove these level shifts by detrending the signal through the
subtraction of the moving mean (i.e., the red line) computed
over a window of 50 samples (or 1.3 ms).
Pulse Noise Removal. Magnetic signals also consist of
impulsive noise generated by surrounding electronic com-
ponents (e.g., CPUs). We resolve this type of noise by iden-
tifying and eliminating outliers of the time series using the
Hampel filter [57]. Specifically, the Hampel filter computes
the median,𝑚, and standard deviation, 𝜎 , of the samples in
each sliding window of 200 samples. If the value of a time

sample deviates beyond the value, 3𝜎 , from the median,𝑚,
such a sample is identified as an outlier and is replaced with
the median’s value,𝑚 (see Figure 8(b)).
Normalization. We perform z-normalization on the mag-
netic signal, 𝑥 (𝑡), and obtain the denoised signal, 𝑥 (𝑡), to
normalize the signals collected across varying distances and
locations. Specifically, we compute the denoised signal, 𝑥 (𝑡),
as (𝑥 (𝑡 )−𝜇 )

𝜎
, where 𝜇 and 𝜎 are the mean and standard devia-

tion of the overall magnetic signal [60].

5.3 Mining Frequency Identification
This module takes as input the specifications of the GPU
model under test to output the estimated mining frequency
range. Recall that themining signature changes with the GPU
model (i.e., Challenge 2). Hence, in this module, we account
for the various GPU specific parameters (e.g., number of
streaming multiprocessors (SMs), number of registers per
SM) to systematically identify the minimum and maximum
possible mining frequency per GPU model, namely 𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 and
𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 , respectively. The resulting mining frequency range
is then used to extract features of mining signature in the
Feature Extraction and Aggregation module (§5.4).

Recall from our background on GPU computational model
(§2.2) that each kernel invocation involves multiple thread
assignments. Within each assignment, the GPU scheduler
assigns as many threads as possible while adhering to re-
source constraints. From our empirical analysis, we observe
that during cryptomining, the magnetic side channel pro-
duces a periodic peak for every thread assignment, as depicted
in Figure 9. We propose that the periodic leakage patterns
observed may be attributed to the repeated execution of
hash computations in cryptomining. Such computations are
performed across multiple thread assignments and kernel
invocations, leading to periodic leakage patterns throughout
mining program execution. Hence, the leakage frequency
during cryptomining, or the mining frequency, can be com-
puted as the number of thread assignments every second.
Mining frequency, or the rate of thread assignments, de-

pends on the GPU specifications, specifically the number of
SMs (𝑛𝑠𝑚), and the number of registers per SM (𝑛𝑟𝑒𝑔). Further-
more, mining frequency is also dependent on characteristics
of the cryptomining algorithm, specifically the number of
registers required per thread for mining (�̃�𝑟𝑒𝑔), as well as
its hash rate (H ) for the given GPU model. However, as we
have access only to the GPU model specifications and not
the mining algorithm, we compute a range of possible values
for the mining frequency (𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 , 𝑓
𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 ) as explained below.

An Example. Let us consider the GPU GTX 1080 Ti as an
example, with the number of SMs (𝑛𝑠𝑚) = 28, and the number
of registers per SM (𝑛𝑟𝑒𝑔)= 65535. If each thread execution for
cryptomining takes up �̃�𝑟𝑒𝑔 registers = 80, then the number
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Figure 9: Figure depicts our observation that each
thread assignment leads to a corresponding peak in the
magnetic signals for cryptomining. We further lever-
age this observation to compute the mining frequency.

of threads per thread assignment in GPU, 𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ≈ 𝑛𝑠𝑚 ∗
(𝑛𝑟𝑒𝑔/�̃�𝑟𝑒𝑔) threads2. Subsequently, the mining frequency,
𝑓𝑚𝑖𝑛𝑒 , is computed as the ratio, (H/𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ), which equals
1, 473 Hz3, when the hash rate,H = 33Mh/s. However, note
that, in general, we only know approximate values for the
number of registers for mining, i.e., �̃�𝑟𝑒𝑔 ∈ [75, 85] registers,
as well as the hash rate, i.e.,H ∈ [20, 35]Mh/s. Consequently,
we estimate the minimum and maximum mining frequency
as – 𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 = 827 Hz and 𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 = 1, 628 Hz, respectively.

5.4 Feature Extraction and Aggregation.
This module takes as input the pre-processed signal (§5.2) as
well as the GPU mining frequency range, i.e., (𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 , 𝑓
𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 )

Hz (§5.3) to output GPU-aware mining features. Specifically,
we segment the magnetic signal into smaller segments (512
samples each), which we refer to as trials, to perform per-
trial feature extraction. These per-trial features are then ag-
gregated to obtain statistical features that are subsequently
leveraged for model training/inference. The steps involved
in this process are elaborated below.

5.4.1 Per-Trial Feature Extraction. This step takes the mag-
netic signal of each trial to output their mining prominence
feature, as depicted in Figure 10(a). Prominence measures the
height of a peak relative to its neighboring peaks. Specifi-
cally, for each of the trials, we first compute the magnitude
spectrum based on the Fast Fourier Transform (FFT) algo-
rithm [7]. Subsequently, we identify the frequency peak,
𝑓𝑝𝑒𝑎𝑘 , with the maximum prominence. If 𝑓𝑝𝑒𝑎𝑘 falls within
themining frequency range, i.e., between 𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 and 𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 , we

2In general, the exact number of threads will be affected by warp execution,
execution of background applications among others.
3After correcting for warp execution, i.e., threads execute in sets of 32.
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Figure 10: Figure (a) depicts the Per-Trial Feature Ex-
traction step which takes as input the denoised signal
as well as the range ofmining frequency, to output the
peak prominence; (b) depicts the Multi-Trial Feature
Aggregation step which computes statistical features
across several trials with non-zero prominence values.

output its corresponding prominence value. However, if 𝑓𝑝𝑒𝑎𝑘
is out of range, we output zero, as it indicates the absence of
significant mining frequency in the magnetic signal, suggest-
ing that the corresponding trial includes potential execution
of non-mining applications.

5.4.2 Multi-Trial Feature Aggregation. We aggregate fea-
tures across multiple trials to generate statistical features
that we utilize for model training or inference.
Although mining prominence per trial obtained from the

feature extraction step (§5.4.1) is an indicator of cryptomin-
ing activity, it may still be error prone in the presence of back-
ground applications due to noisy magnetic signals caused
by sharing GPU time (Challenge 1). Hence, we address this
challenge by computing aggregated features over multiple
trials, as depicted in Figure 10(b). In particular, we learn three
features: (i) Mining Ratio is computed as the fraction of
trials with a positive prominence value output by the Feature
Extraction Module (recall that feature extraction step returns
zero if there is no 𝑓𝑝𝑒𝑎𝑘 within the mining frequency range).
(ii) Mean Prominence is computed as the average promi-
nence among all trials with positive prominence values. To
compute (iii) Mean Correlation, we first compute the max-
imum correlation between all pairwise trials with positive
prominence scores. Subsequently, we compute the average
of the maximum correlation scores to obtain the mean corre-
lation. We leverage this feature due to the temporal similarity
of magnetic traces during cryptomining.
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Applications # Tasks # Traces
Deep Learning Training 13 9204
Cryptography 5 3540
Games & Graphics 11 8496
Video & Image En/Decoding 7 4956
Image & Signal Processing 13 9204
Algebra & Optimization 11 7788
Physics Simulation 4 2832
Statistics & Other 16 11800
Total 80 57820

Table 2: Table enumerates the eight benign (non-
mining) applications, along with the number of tasks
and magnetic traces per application leveraged for eval-
uating MagTracer.

5.5 Model Training and Inference.
In this module, we input the aggregated features for each
magnetic trace along with their binary labels (i.e., mining or
benign), to train a binary classifier (during Bootstrapping) and
detect cryptojacking (during Deployment). Specifically, in
Bootstrapping phase, we train a light-weight Support Vector
Machine (SVM) binary classifier with Radial Basis Function
(RBF) as the kernel [2]. Subsequently, during Deployment, we
input the aggregated features into the SVM model to obtain
a prediction on potential cryptomining events. We choose
SVMs over neural networks due to their ability to achieve
high classification accuracy in the presence of small training
dataset as well as low-dimensional features [40].

6 EVALUATION
We present the evaluation ofMagTracer through comprehen-
sive real-world experiments, demonstrating its feasibility.

6.1 Experimental Setup
Platform. Our setup (Figure 3) consists of a computer with
a GPU, a DRV425 magnetic-field sensor, an ADS1263 ADC
with 38.4 kHz sampling rate, and a Raspberry Pi 4B [36, 37,
62]. The computer consists of an AMD Ryzen 5 2600X CPU
and runs Windows 10 OS. We place the magnetic sensor
attached to the side panel of the computer, unless mentioned
otherwise. We collect a total of 512 samples from the mag-
netic sensor per trial, and aggregate a total of 75 trials (with
a total duration of about 1 second) per SVM model training
or inference. Henceforth, we refer to the aggregated signal
of 75 trials a magnetic trace.
Data Collection. We evaluate MagTracer on a total of 14
GPU models released in the past seven years from popu-
lar GPU vendors, NVIDIA and AMD. These models vary
in their architecture and number of streaming multiproces-
sors as depicted in Table 3. We collect magnetic traces for

different types of mining and non-mining applications. For
mining, we leverage ethminer, a widely-used open-source
implementation GPU mining program, as our baseline appli-
cation [21, 25], and we capture a total of 18,998 traces (i.e.,
1,357 traces per GPU). For non-mining setting, we collect a
large dataset of 57, 820 magnetic traces for 80 tasks from 8
representative applications including deep learning training,
gaming, and image processing (see Table 2). While we collect
magnetic traces for all 80 tasks from NVIDIA GPUs, we col-
lect traces from only 10 of those tasks for AMD due to CUDA
dependency for all other tasks, making them inapplicable to
AMD GPUs. Overall, we collect magnetic traces of a total
duration exceeding 23 hours.

We evaluateMagTracer’s performance over unseenmining
software and cryptocurrencies (§6.4.1 & §6.4.2), its robust-
ness to varying sensing distances and locations (§6.4.3 &
§6.4.4), different background applications (§6.4.6) as well as
ambient noise (§6.4.7). We also test its performance in the
presence of unseen GPUs (§6.4.8). In addition, we perform
detailed security analysis where we evaluate MagTracer’s
resilience to advanced attacks, namely binary obfuscation
(§6.5.1), GPU throttling (§6.5.2) as well as several targeted
attacks on MagTracer’s detection (§6.5.3).
Performance Metrics.We define True Positive Rate (TPR)
and False Positive Rate (FPR) to evaluate MagTracer’s perfor-
mance on cryptojacking detection. We consider a magnetic
trace to be a positive example if MagTracer recognizes it as a
mining magnetic trace (and a negative example otherwise).
Hence, we define TPR as the fraction of all traces that are
identified to be positive examples, when the GPU is crypto-
mining, and FPR as the fraction of all traces that are identified
as positive examples when the GPU is not cryptomining.

6.2 MagTracer Overall Performance
We evaluateMagTracer’s performance across 14 GPUmodels,
by collecting a total dataset of 18, 998 positive (i.e., crypto-
mining) traces and 57, 820 negative traces from a wide range
of benign applications (Table 2). Among the 80 non-mining
tasks, it is noteworthy that 36 of them demonstrate GPU
usage exceeding 99%, comparable to that of cryptojacking.

In Table 3, we present the 14 different GPU models tested,
their architecture, number of SMs in them, as well as their
computed minimum and maximum mining frequency, 𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒

and 𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒 , based on the GPU specs. We now evaluate Mag-

Tracer by utilizing 70% of collected traces from each GPU for
training, and the rest for testing. Figure 11 illustrates that
MagTracer achieves a high average TPR of 98.6%, while main-
taining an FPR below 0.69% across all GPUs. This highlights
the effectiveness of MagTracer in distinguishing between
cryptojacking and compute-intensive applications. These
results demonstrate the efficacy of MagTracer’s design in
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No. GPU Models Architecture # SMs 𝑓𝑚𝑖𝑛
𝑚𝑖𝑛𝑒

(Hz)
𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒

(Hz)
1 GTX 1060 [N] Pascal 10 1042 2604
2 GTX 1070 [N] Pascal 15 1119 2040
3 GTX 1070Ti [N] Pascal 19 914 1919
4 GTX 1080Ti [N] Pascal 28 827 1628
5 GTX 1660Ti [N] Turing 24 641 1519
6 RTX 2060 [N] Turing 30 694 1345
7 RTX 2070 [N] Turing 36 675 1483
8 RTX 2070S [N] Turing 40 608 1335
9 RTX 2080Ti [N] Turing 68 536 1057
10 RTX 3060 [N] Ampere 28 889 1907
11 RTX 3060Ti [N] Ampere 38 822 2056
12 RTX 3070 [N] Ampere 46 694 1698
13 RX 5500XT [A] RDNA 22 1182 2364
14 RX 580 [A] Polaris 36 552 1694

Table 3: Table enumerates the 14 tested GPU models,
along with their architecture, number of streaming
multiprocessors (SMs), as well as the computed mini-
mum and maximum mining frequency, 𝑓𝑚𝑖𝑛

𝑚𝑖𝑛𝑒 and 𝑓𝑚𝑎𝑥
𝑚𝑖𝑛𝑒

(as explained in §5.3). Here [N] indicates an NVIDIA
GPU, and [A] indicates an AMD GPU.
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Figure 11: Figure depicts the individual TPRs and FPRs
for the 14 GPU models of five different architectures.

estimating the mining frequency for detecting cryptomining
and its ability to scale across different GPU models. Further-
more, note that our considered setting to collect training data
from the same GPU models that we test is valid given our
system model (§4) where-in the victim installs MagTracer to
monitor their own device.

6.3 Performance of System Modules
We now evaluate the different design modules of MagTracer ,
and justify their selection.
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Figure 12: Figure depicts that the estimated mining
frequency of the Mining Frequency ID Module closely
matches themeasured value from themagnetic signals.
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Figure 13: Figure depicts the TPR and FPR values of
MagTracer with and without the Mining Frequency
Identification module.

6.3.1 Mining Frequency ID Performance. We evaluate this
module – (1) for its accuracy in estimating mining frequency,
and (2) its impact on overall cryptomining detection.

Recall from Mining Frequency ID module (§5.3) that min-
ing frequency depends both on GPU specifications as well
as the mining algorithm. In this evaluation, we compare our
estimated mining frequency (computed assuming access to
GPU and algorithm information) and measured mining fre-
quency (obtained from magnetic signals). Specifically, we
evaluate on all 14 GPUs with Ethash mining algorithm. As
depicted in Figure 12, our estimated values closely match the
measured mining frequency, with a mean error of 4.5%.
We perform another experiment where we compare the

overall performance of cryptojacking detection, with and
without the mining frequency estimation module. In the ab-
sence of this module, we selected the frequency band 500 Hz
to 3 KHz, which is a wideband range that covers mining
frequency across all 14 GPUs. As depicted in Figure 13, our
estimation module improves the average TPR by 8.58% and
drastically reduces the average FPR from 2.42% to 0.31%,
thereby demonstrating its overall significance.

6.3.2 Performance of Different Classifiers. We evaluate six
different classifiers including SVM, Random Forest, Multi-
layer Perceptron, K-Nearest-Neighbors, Decision Tree, and
AdaBoost, for performing binary classification (§5.5). The
average TPRs and FPRs for all classifiers are above 98.1%,
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Figure 14: Figure depicts the TPR achieved by Mag-
Tracer for (a) different mining software and (b) differ-
ent cryptocurrencies.

and below 0.53% respectively. As the different classifiers
indicate only marginal differences, we chose SVM for its
overall generalization performance [40].

6.4 Differing Experimental Conditions
We evaluate MagTracer’s performance across several factors.
For this purpose, we perform our experiments on a repre-
sentative GPU – NVIDIA GTX 1080 Ti. Unless mentioned
otherwise, in all these experiments we leverage the same
trained model based on data from the GTX 1080 Ti model.

6.4.1 Impact of Unseen Mining Software. To test the effec-
tiveness ofMagTracer in detecting cryptojacking in the pres-
ence of unseen GPU mining software, we report TPR by
performing cryptomining using Bminer, GMiner, lolMiner,
Nanominer, and PhoenixMiner mining software [6, 21, 30,
47, 52, 59]. Note that these mining programs differ from the
mining program utilized to train our model (Ethminer). As
observed in Figure 14(a), MagTracer achieves TPRs above
98% in all cases, depicting the effectiveness of MagTracer in
identifying unseen mining software.

6.4.2 Impact of Unseen Cryptocurrencies. In the previous
evaluation (§6.4.1), we test MagTracer for unseen mining
software for EthereumPoW cryptocurrency alone. Hence,
we now evaluate MagTracer for six mainstream cryptocur-
rencies in GPU mining, namely – ETHF, ETC, RVN, SERO,
ZANO, FIRO [22, 24, 26, 65, 68, 82]. These cryptocurrencies
apply various mining algorithms (§5.4) [14, 20, 23, 27, 64, 81],
which have different hash rates on a given GPU, affecting
the mining frequency (Section 5.4). Their hash rates on GTX
1080 Ti vary from 21.5 Mh/s to 35 Mh/s, resulting in mining
frequency varying from 827 Hz to 1,628 Hz. As depicted in
Figure 14(b), MagTracer achieves high TPRs above 98% in
all cases. We attribute this high performance to the fact that
all GPU mining algorithms adhere to the GPU PoW princi-
ple, wherein they execute simple and repetitive hash func-
tions that are both compute-intensive and memory-bounded.
Hence, algorithms from different cryptocurrencies produce

similar leakage signals even though they exhibit different
mining frequencies.

6.4.3 Impact of Sensing Distance. In order to evaluate the
effect of sensing distance, we test MagTracer’s performance
for varying distances up to 40 cm from the device’s exterior
side panel. In particular, as depicted in Figure 15, we observe
thatMagTracer achieves a high TPR above 91.5% and 98.3% at
a distance of 24 cm and 28 cm for the computer’s side panel
built of metal and plastic respectively. While the metal casing
attenuates the magnetic signal, it is not as effective against
low-frequency GPU leakage signals, hence reducing detec-
tion distance merely by 4 cm. These findings, particularly
regarding metal casing, underscore MagTracer’s robustness
against conductive shielding and ferromagnetic objects.

6.4.4 Impact of Sensor Location. We evaluate our system
by placing the sensor on four exterior panels of the host
device. At each location, we also vary the orientation of
magnetic sensor, which affects its sensitivity axis. We depict
the average TPR for the three different orientations at each
location in Figure 16. The results indicate that performing
detection from the left panel of host achieves the highest
TPR compared to other locations. This is because the left
panel is made of plastic while the other three panels are
metal. Besides, the left panel is closest to the GPU power
line, which emanates strong magnetic signals. However, the
average TPR across all the locations is still higher than 97.7%
(𝜎 = 2.59%). This evaluation illustrates the negligible impact
of sensor placement, depicting MagTracer’s usability.

6.4.5 Impact of Sensing Duration. Recall that MagTracer
combines 75 magnetic signal trials, which account to a sens-
ing duration of one second to detect cryptojacking (§6.1). In
this experiment, we vary the number of trials such that the
sensing duration varies from 0.1 s to 2 s. As depicted in Fig-
ure 17, MagTracer achieves a TPR higher than 99% even for
a low sensing duration of 0.5 seconds, depicting its potential
for fast detection of cryptojacking.

6.4.6 Impact of Background Applications. We evaluate the
impact of background software on MagTracer’s detection
by running cryptojacking software together with other 16
benign GPU tasks, including seven games and graphics pro-
grams, three deep learning training tasks, three image pro-
cessing programs, and three algebra programs. Executing
background applications will throttle the hash rate for cryp-
tomining applications. We define throttling ratio as the frac-
tional reduction in hash rate in the presence of background
programs, where a higher throttling ratio indicates a more
compute-intensive background application. From Figure 18,
we observe that the average TPR is above 96.5% when the
throttling ratio is lower than 0.79. This indicates for back-
ground programs that are relatively less GPU-intensive (e.g.,
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Figure 15: Figure depicts TPR under
different sensing distances.

Figure 16: Figure depicts TPR at dif-
ferent sensor placement locations.
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Figure 17: Figure depicts TPR under
different sensing duration.
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Figure 18: Figure depicts the effect on TPR due to execu-
tion of background applications together with mining.

algebra tasks), cryptomining can be successfully detected
with a high TPR. However, when the mining software is
running in parallel with highly compute-intensive games
and graphics benchmarks, i.e., with a throttling ratio over
0.79, the TPR drops below 50%.

6.4.7 Impact of Ambient Magnetic Noise. We now evaluate
the effect of external noise on performance ofMagTracer . So
far, all our evaluations are done in the presence of other elec-
tronic components on computers, such as power supply units,
memory, and CPUs, all emanating EM noises. To further eval-
uate the impact of ambient noises, we conduct experiments
in a 4𝑚 × 4.5𝑚 server room housing more than 30 CPU/GPU
servers. In this setting, MagTracer achieves a high TPR and
low FPR of 97.4% and 0% respectively. This result depicts the
robustness of MagTracer to such ambient magnetic noises,
which is primarily attributed to our Noise Removal module
(§5.2) that significantly filters all non-mining patterns.

6.4.8 Impact of Unseen GPU Models. To evaluate the trans-
ferability of MagTracer , we conduct cross-GPU experiments
where the SVM model is trained on data from GTX 1080
Ti and tested on the other 13 GPUs, as shown in Figure 19
(the ‘✗’ in the figure corresponds to the GPU model utilized
for training). Our results indicate that MagTracer can detect
cryptomining events with an average TPR of 83.3% and FPR
of 0.53%. We attribute the degradation in the performance to
the varying SNRs in the magnetic emanation pattern across
GPUs. In particular, we observe that for the RTX 3070 GPU
which achieves the lowest TPR of 49%, the noise floor of the

Figure 19: Figure depicts MagTracer’s cross-GPU detec-
tion performance when trained on GTX 1080 Ti and
tested on the other 13 GPUs. We do not evaluate the
performance on the trained GPU (denoted by a ‘✗’).

magnetic signal is significantly higher, making the mining
signature less prominent in comparison to other GPUs. De-
spite this case, our results suggest that MagTracer achieves
over 85% accuracy in 9/13 GPU models in the cross-GPU
setting, thereby demonstrating its transferability. We believe
that fine tuning the SVM model with fewer training samples
from each GPU can further improve the performance.

6.5 Security Analysis
In this subsection, we evaluate the robustness of MagTracer
in the presence of several advanced techniques that could be
employed by a remote adversary to evade our detection.

6.5.1 Robustness against Obfuscation. Attackers may use bi-
nary obfuscation to evade detection by altering the structure
of the mining executable while maintaining its original func-
tionality [53, 56]. To evaluate its impact on MagTracer , we
use two well-known packers, UPX and Enigma, to obfuscate
mining executables [74, 76]. In particular, we utilize UPX, a
popular executable compressor used for binary obfuscation,
to perform five levels of file compression from 36.08% to
52.03%. Similarly, we leverage Enigma to perform API obfus-
cation at three different levels, where a higher level activates
additional features. As depicted in Figure 20, our results
show thatMagTracer maintains a TPR above 98% in all cases,
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increasing obfuscation

Figure 20: Figure depicts the effect
on TPR due to binary obfuscation.
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Figure 22: Figure depicts the effect
on TPR due to targeted attacks.

demonstrating its resilience to binary obfuscation techniques.
The reason for this is that although binary obfuscation trans-
forms the mining binary, its physical characteristics are still
retained, which can be captured by MagTracer .

6.5.2 Robustness against Throttling. In this experiment, we
throttle the mining program’s active time by adding inactive
time slots (or pauses) periodically during the execution of
the mining program. Here, throttling ratio is defined as the
fraction of inactive time, i.e., the fraction of total time when
the mining program is not executed. As depicted in Figure 21,
we achieve TPRs above 81% for throttling ratios below 0.77.
However, we regard this acceptable as high throttling ratios
above 0.77 indicate low hash rates, which are not only un-
profitable for the attacker but also consume fewer resources
from the server, hence making them less concerning.

6.5.3 Robustness against Targeted Attacks. Finally, strong
attackers may adopt targeted tactics to eliminate the corre-
lation between the magnetic trace and the executed opera-
tions, thereby weakening the mining signature. Specifically,
as depicted in Figure 22, we explore three anti-detection ap-
proaches that remote adversaries may leverage to invalidate
MagTracer’s detection as elaborated below.

First, we insert random delay to make threads go out of
synchronization, which is a common countermeasure against
side-channels [42]. We evaluate this by performing 60 tests,
where we sample a random delay from a uniform distribution
between 0-1 milliseconds. However, in this case, MagTracer
still achieves TPR over 99%. This is because the mining sig-
nature is caused by the assignment of large sets of threads,
thereby unaffected by random delays of individual threads.
Second, we issue multiple streams to change the GPU

control flow, and thereby diminish the mining signature.
Here, a stream refers to a sequence of operations that ex-
ecute in issue-order on GPUs [15]. Our results depict that
MagTracer can detect mining events with high TPRs when
the number of streams is varied from two to four. This good
performance is because the asynchronous execution across
streams does not affect the cyclic thread assignment within
individual streams, thus preserving the mining signature.

Third, an attacker may execute multiple mining algo-
rithms simultaneously to reduce the mining signature’s
SNR while still earning reasonable profits. To evaluate this,
we run Ethash together with different mining algorithms
(FiroPow, ProgPow, and KawPow). In such a scenario, the
hash rates of the two concurrent mining algorithms reduce
by half, and consequently, the TPR drops to 70.6%. While run-
ning more mining algorithms simultaneously may further
mitigate the mining signature, it is increasingly unrealis-
tic to carry out such attacks. This is because each mining
algorithm needs to allocate a significant amount of GPU
memory (around 4GB), making it impractical to run multiple
cryptomining algorithms at the same time [20].

In summary,MagTracer maintains its effectiveness against
obfuscation, throttling, and potential targeted evasion meth-
ods employed by strong attackers. This demonstrates the
resilience and efficacy of MagTracer in the face of sophisti-
cated evasion attempts.

7 DISCUSSION
We discuss future directions and alternatives to MagTracer .
Hardware Integration. Recall that MagTracer’s current
setup (Figure 3) involves a variety of components including
a magnetic sensor, ADC as well as a Raspberry Pi 4B. The
total cost of the current prototype is around 40 USD. By
integrating the 3 USD magnetometer with a low-cost micro-
controller like the 1 USD RP2040 [63] onto a single printed
circuit board, we can significantly reduce the overall cost
and achieve a smaller form-factor.
Deployment Considerations. Although we currently eval-
uate MagTracer on a standalone host system with a single
GPU, we envisionMagTracer to be deployed in server rooms
and data centers with machines equipped with several GPUs.
We believe MagTracer’s approach can be extended to detect-
ing several GPUs within the same host due to their physical
proximity to each other. Standard server racks typically have
a width of approximately 48.2 cm [5, 71]. Considering that
the working range of MagTracer is approximately 24 cm, we
believe that a single MagTracer unit strategically positioned
at the center of the server can effectively monitor all GPUs
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within it. Furthermore, with a miniaturized form-factor dis-
cussed earlier, we may be able to attach one magnetic sensor
per machine and report potential cryptojacking events to
the server administrator in real time.
Comparison with Other Side Channels. In addition to
magnetic side channels, our preliminary experiments reveal
that direct access to power traces from GPU power lines
can provide signals with higher SNR than magnetic signals
for cryptojacking detection. However, obtaining such traces
involves cutting GPU power lines, making the solution less
usable. While power traces can also be obtained from GPU’s
built-in power analyzer, this approach poses two concerns –
1) their sampling rates are typically low (about 100 Hz), hence
making cryptojacking detection challenging [55, 72], and 2)
since the readings would be obtained through the host’s
interface, attackers with strong software capabilities may
alter them. In contrast, MagTracer’s detection is unaffected
by attackers with strong software capabilities.

8 RELATEDWORKS
We now present closely related work with MagTracer .
Cryptojacking Detection.Most prior works on cryptojack-
ing detection focus on CPUs, and are primarily software-
based defenses [3, 34, 41, 43, 53, 67, 73, 78]. The closest work
to ours is by Gangwal et al., where they leverage magnetic
side-channel to detect CPU cryptojacking [29]. MagTracer ’s
unique contribution lies in its GPU hardware execution anal-
ysis, specifically in establishing the connection between cryp-
tomining and GPU magnetic emanation by accurately identi-
fying themining frequency. This distinguishes our work from
previous studies, including [29]. Furthermore, MagTracer’s
technique ensures scalability across diverse GPU architec-
tures and robust detection in the presence of interferences.
Electromagnetic Side-Channels. Prior works have lever-
aged electromagnetic (EM) leakage signals for extracting
cryptographic keys, passwords, screen content, audio, and
payment tokens, among others [9, 11, 12, 39, 45, 48, 70].
Several other works have also utilized EM signals for de-
fense, in particular for malware and eavesdropping detec-
tion [10, 33, 58, 61]. Of these works, one particular work
leverages GPU magnetic signals for inferring neural net-
work architecture by leveraging the GPU synchronization
points to identify network layers and activation function
types [48]. Unlike their approach, MagTracer systematically
analyses the magnetic signals during mining, in particular,
the correspondence between the rate of thread assignments
by GPU scheduler and the mining frequency, to ultimately
perform cryptojacking detection.

9 CONCLUSION
We proposeMagTracer , a novel GPU cryptojacking detection
system, based on the distinct magnetic leakage signals em-
anated from GPUs while mining. We design and implement

MagTracer , as well as perform a real-world evaluation on 14
heterogeneous GPU models, and achieve high true positive
and low false positive rates. Our solution is both low-cost and
a practical solution for detecting cryptojacking in servers.
Through this work, we hope to inspire more research in the
direction of leveraging non-invasive, proximate sensing for
securing, as well as monitoring the health of highly valuable
computing resources such as GPUs.
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