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Abstract—Real-time video conferencing is increasingly preva-
lent in everyday life, yet it faces growing threats from forgery
attacks where synthetic or replayed videos are injected into live
calls, potentially leading to serious privacy breaches or financial
losses. Unfortunately, existing approaches remain inadequate for
detecting such attacks in a reliable, efficient, and user-friendly
manner. In light of this, we propose EchoFence, a non-intrusive,
lightweight, and robust framework for authenticating live video
streams. EchoFence actively emits imperceptible ultrasonic sig-
nals during video conferencing, which physically interact with
user’s natural facial and body movements and are captured
by the microphone. Motion-related features are then extracted
from both the ultrasonic responses and the video frames, and
a training-free cross-modal verification strategy is employed
to assess their temporal coherence. Significant misalignment
between the two modalities is taken as strong evidence of forgery.
Additionally, each ultrasonic signal carries a random credential
via frequency modulation, which is validated through template-
based matching, preventing tampering attempts involving ul-
trasound replay or removal. Extensive experiments show that
EchoFence effectively detects three representative types of video
forgeries with over 94% accuracy, and remains robust under
diverse conditions, making it a practical solution for trustworthy
video conferencing.

Index Terms—forgery detection, cross-modal consistency, ul-
trasonic sensing, video conferencing

I. INTRODUCTION

Video conferencing has become an essential part of daily
life, enabling remote communication, collaboration, and iden-
tity verification. While these systems offer convenience and ac-
cessibility, they also introduce serious security concerns. With
the rise of social media and advanced deepfake generation
techniques [1], adversaries can easily obtain video footage or
synthesize highly realistic videos of a target individual. These
enable forgery attacks that impersonate the legitimate user
during video conferencing, posing significant threats to privacy
and financial safety. A recent incident, where the attackers
posed as the chief financial officer using deepfake techniques
and scammed out of 25 million dollars via a video call [2],
has highlighted the real-world risk of forgery attacks.

To defend against such attacks, existing solutions can
be broadly categorized into passive and active approaches.
Passive methods analyze audio-visual content to detect cues
of manipulation, including resolution-related artifacts [3],
[4], frequency-domain inconsistencies [5], [6], spatiotemporal
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Fig. 1: An application scenario of EchoFence. An attacker
attempts to substitute the live video with forged content. The
conferencing platform, equipped with EchoFence, emits im-
perceptible ultrasonic signals and records synchronized audio-
visual streams. It performs local verification on the ultrasonic
responses and video streams to detect such video forgery
attacks and ensure authenticity.

anomalies [7], [8], and lip-audio mismatch [9], [10]. How-
ever, as manipulation techniques advance, forgeries exhibit
fewer detectable artifacts [11]. Meanwhile, lossy compression,
common in real-time video conferencing, can further degrade
or remove these subtle cues [12]. Finally, passive methods
are generally ineffective against replay attacks, as they lack
explicit indicators to distinguish live content from pre-recorded
footage of legitimate users.

These limitations have motivated the development of active
methods, which aim to enhance robustness by introducing
controlled stimuli or challenge-response prompts during live
interaction. These stimuli introduce verifiable signals that
are harder to forge, remain detectable under compression,
and can distinguish live users from replayed content. For
example, some approaches instruct users to perform specific
physical or verbal actions, such as facial expressions or spoken
passphrases, and verify them through audio-visual contents or
other sensor feedback [13]-[15]. Others project dynamic visual
patterns onto the screen and verify them via corneal or facial
reflections [16], [17]. While these methods show promise
under controlled conditions, they suffer from several key limi-
tations: 1) Intrusiveness: Active methods rely on explicit user
cooperation, such as performing prompted actions, or involve



displaying full-screen dynamic patterns that obscure the call
interface. Such interventions are disruptive to the natural flow
of video conferencing and are therefore unsuitable, especially
in professional video conferencing settings. 2) Sensitivity
to occlusion and behavior variation: Many methods focus
narrowly on facial regions, making them fragile when the face
is partially occluded (e.g., by hand gestures) or when the user
exhibits non-standard behaviors.

In light of this, we pose the following research question: Is it
possible to design a novel framework that can robustly identify
both synthetic and replay-based attacks, without requiring
user cooperation or disrupting the natural video conference
experience? To this end, we propose EchoFence, a non-
intrusive yet robust forgery detection framework tailored for
trustworthy video conferencing. Our key idea is to actively
probe the physical world using imperceptible ultrasonic signals
to verify the authenticity of the video, with no need for
user cooperation. Specifically, in a genuine video stream, user
movements, such as head turns or hand postures, are physically
performed and result in temporal fluctuations in the reflected
ultrasonic signals. These fluctuations remain temporally coher-
ent with the motion captured in the video stream. In contrast,
forged content, whether synthesized or replayed, lacks such
real-world physical coherence, leading to observable incon-
sistencies between audio and visual modalities. EchoFence
detects such inconsistencies for forgery detection.

EchoFence’s design relies solely on built-in microphones,
speakers, and cameras. Therefore, it can be seamlessly in-
tegrated into mainstream video conferencing platforms (e.g.,
Zoom or Teams) as a plug-and-play module. As illustrated
in Fig. 1, when users communicate through a trusted software
equipped with EchoFence, the software emits ultrasonic probes
and simultaneously records the reflected audio along with the
video stream during the call. Verification is performed locally
on the sender side. If a forgery is detected, the platform
can immediately alert the remote party, mitigating potential
security risks. The inaudible ultrasonic artifacts are removed
before forwarding the streams to the other side, preventing
potential interference. EchoFence is resilient to both synthetic
and replay-based forgeries, while preserving a seamless and
natural user experience. Unlike previous active approaches, it
introduces no visual distractions and operates transparently in
the background, making it suitable for real-world deployments.

Designing EchoFence involves three main challenges:

a) Reliable motion estimation under non-cooperative
and unconstrained conditions: In contrast to existing active
schemes that rely on users cooperatively performing prede-
fined gestures, EchoFence must operate in non-cooperative
settings where participants may exhibit only subtle and uncon-
strained motions, such as slight head tilts or casual hand shifts.
Frequent occlusions or motions occurring partially off-frame
can further degrade visual tracking, posing a significant chal-
lenge for reliable motion sensing. To address this, we leverage
frequency-modulated ultrasonic chirps to capture fine-grained
upper-body motion, including subtle movements. In parallel,
we extract visual motion using optical flow analysis, which

covers a broader body region beyond the face and is tolerant to
occlusions and partially out-of-frame motion. The combination
yields consistent and robust cross-modal motion observations
in unconstrained video conferencing scenarios.

b) Cross-modal verification without modality-specific
training: Prior detection methods based on cross-modal val-
idation typically require large annotated datasets to learn
complex correspondences between high-level cues, such as
speech content and lip movements, which is labor-intensive
and may not be practical in real-world settings. To address this
challenge, EchoFence converts ultrasonic echo fluctuations and
visual frame differences into a unified motion-energy signal.
This allows verification to be formulated as a lightweight
signal-matching task, therefore alleviating the requirement of
semantic alignment or modality-specific training.

c) Ensuring replay resilience while maintaining sensing
utility: To defend against replay attacks, it is essential to verify
that the ultrasonic response is captured in real time, rather
than reused from prior recordings. Our key idea is to embed
a randomized credential, conceptually similar to a nonce,
into the ultrasonic signal. However, introducing randomness
must be done carefully, as it can disrupt the signal structure
essential for accurate motion sensing. To balance both goals,
EchoFence encodes the credential into the sensing waveform
by allocating a randomized, time-varying frequency band for
frequency-modulated continuous-wave (FMCW) modulation.
The system then performs adaptive motion sensing over these
structured chirp sequences. This design preserves the temporal
and spectral integrity required for robust motion estimation
while enabling reliable detection of replayed content.

We implement and evaluate EchoFence on commercial off-
the-shelf devices by capturing real-world conversation ses-
sions totaling over 12 hours. We comprehensively evaluate
EchoFence’s performance under various conditions, including
different forgery methods, device placements, and video res-
olutions. Overall, EchoFence achieves an accuracy of over
94% in detecting both synthetic and replay-based forgeries,
significantly outperforming the state-of-the-art systems, while
maintaining a non-intrusive and seamless user experience.

In summary, our contributions are as follows:

o We propose a non-intrusive forgery detection framework
for video conferencing that operates seamlessly without
requiring user cooperation or disruptive visual patterns.

o We extract reliable motion features from ultrasonic re-
sponses and visual frames, and design a lightweight
strategy for cross-modal consistency verification.

e We embed randomized authentication credentials into
ultrasonic signals via frequency modulation, ensuring
protection against replay attacks without compromising
motion sensing capability.

e« We conduct extensive real-world experiments, demon-
strating the effectiveness and robustness of our framework
in detecting both synthetic and replay-based forgeries.



II. SYSTEM AND THREAT MODEL
A. System Model

EchoFence aims to detect forgery attacks—including syn-
thetic and replay-based ones—in real-time video conferencing
by leveraging imperceptible ultrasonic signals. To support
practical deployment, the system must satisfy the following
requirements: 1) compatibility with commodity devices; 2)
unobtrusive operation without disrupting normal conversation;
and 3) robustness across diverse users and conditions.

We envision a typical video conferencing setup, where
online participants communicate through built-in speakers, mi-
crophones, and cameras. The conferencing platform integrates
EchoFence, which emits ultrasonic signals and simultaneously
records audio-visual streams. By analyzing the ultrasonic re-
sponses and visual content, EchoFence detects forgery attacks
without degrading the user experience.

B. Threat Model

We consider adversaries who aim to spoof their identity
by manipulating the video and audio streams in a video
conferencing scenario. Based on the attacker’s awareness of
the ultrasonic verification mechanism and how they address
the ultrasound, we define three representative attack types:

o Blind Forgery Attack: The attacker is unaware of the
ultrasonic verification mechanism and injects synthetic or
replayed audio-visual streams to impersonate a legitimate
user. Since the microphone input is fully overridden, no
meaningful ultrasonic response is captured.

o Hybrid Forgery Attack: The attacker is aware of the
ultrasonic verification mechanism and allows live ultra-
sonic responses to be recorded. Meanwhile, the visual
stream is forged through synthetic generation or recording
replay, possibly accompanied by synchronized speech to
preserve lip-sync consistency.

o Full Replay Attack: The attacker replays previously
recorded synchronized audio-visual streams, including
valid ultrasonic responses, to simulate a legitimate user,
preserving high cross-modal consistency.

III. SYSTEM OVERVIEW

EchoFence’s design enables non-intrusive forgery detec-
tion by leveraging cross-modal physical consistency between
acoustic and visual motion cues. Unlike traditional audio-
visual watermarking or digital signatures, our system injects
randomized ultrasonic signals into the live audio stream to
actively probe and verify the motion presented in video. We
define a session as a specific time window in an ongoing
video call, during which EchoFence emits ultrasonic signals
and verifies the video content. As illustrated in Fig. 2, our
approach leverages the following four modules to secure the
conference within each session:

Anti-Replay Ultrasound Modulation. Before each verifica-
tion session, we modulate the ultrasonic signal to empower it
with the capability of replay detection. To this end, we gener-
ate a randomized one-time credential sequence, and embed it
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Fig. 2: System overview. EchoFence emits inaudible ultrasonic
signals with embedded credentials to capture physical motion,
recorded in sync with the video. Replay-based and synthetic
forgeries are detected by verifying both the embedded creden-
tial and the ultrasound-visual motion consistency.

into ultrasonic chirps via frequency modulation, ensuring each
session features an unpredictable chirp sequence. At the start
of the session, the modulated ultrasonic signal is emitted into
the live conference, physically interacting with the surrounding
environment and generating verifiable responses that capture
human motion back to the microphone.

Randomness-Based Replay Detection. After receiving the
acoustic responses, we perform replay detection by first iden-
tifying the signal segment containing the modulated ultrasound
and then validating it against the pre-embedded random cre-
dential. Missing or mismatched signals—commonly observed
in blind forgery or full replay—are flagged as attacks before
proceeding to dual-modal motion tracing.

Dual-Modal Motion Quantification. For audio-video streams
that pass replay detection, the system extracts motion cues
from both modalities. On the audio side, we recover the
physical reflections of the chirp signals and compute the dif-
ferential Channel Impulse Response (DiffCIR), which captures
changes in backscattered energy induced by human motion.
On the video side, we apply dense optical flow estimation
to derive frame-level motion magnitude, further enhanced by
human-region masking to eliminate background interference.
Both modalities independently capture temporal variations



corresponding to the same physical movement.
Cross-Modal Consistency Verification. To determine
whether the two modalities match, we evaluate the temporal
correlation between audio-derived and video-derived motion
energy. In genuine recordings, these sequences exhibit strong
synchronization, as they stem from the same physical human
motion. In contrast, manipulated videos, whether replayed or
synthesized, often disrupt this physical consistency, leading
to temporal misalignment or reduced correlation. We employ
correlation-based metrics to quantify this alignment, enabling
robust detection without the need for training or labeled data.
By embedding an environment-sensitive yet unobtrusive
physical probe into live communication and verifying its
response through credential check and dual-modality analysis,
our system offers a practical and robust method for detecting
forgeries in real-world video conferencing scenarios.

IV. REPLAY-RESISTANT MODULATION AND VALIDATION

EchoFence builds on an active probing of the physical
world, thus it is crucial to ensure that the physical signals
leveraged are themselves robust against replay-based forgery.
To this end, we design a randomized ultrasonic modulation
scheme that introduces a verifiable and dynamic physical
stimulus into the conference. This embeds a one-time random
sequence as a security credential into the live audio stream
without disrupting normal conversation. By verifying the con-
sistency between the random sequence embedded in received
ultrasonic responses and the authentic security credential, we
can determine whether the session is a replay.

A. Frequency-Modulated Randomness Embedding

To introduce an additional acoustic signal for trustworthy
video conferencing, it is essential to ensure that it provides
accurate motion capture and does not interfere with normal
live communication. To achieve this, we leverage FMCW
technique, and set the frequency range to an inaudible band
for humans, i.e. 1823 kHz. Moreover, it remains within the
operating range of commodity 48kHz audio hardware on
laptops and smartphones, allowing for reliable emission and
reception of the ultrasonic signals.

To facilitate the introduction of randomness, the ultrasonic
signal is structured as a sequence of M units (M > 10),
each lasting a fixed duration. Within each unit, N chirp cycles
(e.g., N = 20) are transmitted sequentially. As illustrated in
Fig. 3, all chirps within the same unit share the same frequency
configuration, while that vary across different units based on
a random credential sequence:

random[i] € 0,1,2, i=1,...,. M (1)

Each chirp starts at 18 kHz and linearly sweeps to:
fe(;()] = 21kHz + 1kHz - random[3] )

This results in three discrete chirp variants with end fre-
quencies of 21, 22, and 23 kHz, respectively, all with fixed
durations. Rather than switching parameters on a per-chirp
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Fig. 3: Illustration of embedding a random credential into
ultrasonic signals via frequency modulation.

basis, this structure preserves the coherent temporal pattern
required for robust motion sensing.

In this way, the ultrasonic signal within a complete session
encodes M independent selections from a three-valued set,
resulting in a total encoding space of 3 for the random
credential. Since M > 10, the probability of an attacker

blindly guessing the correct pattern is no greater than 3%0

B. Template-based Credential Verification

To defend against replay-based forgeries, EchoFence ver-

ifies whether the received ultrasound matches the originally
embedded credential sequence. A natural yet naive approach
would be extracting the frequency components of the recorded
audio via time-frequency analysis. However, this is inherently
unreliable in real-world settings, as it suffers from limited reso-
lution of short-time windows and is highly susceptible to noise
and reverberation, often resulting in high false positive or false
negative rates. To address this, we propose a template-based
credential matching method, which performs accurate replay
detection through a two-stage process comprising coarse-
grained alignment and fine-grained matching.
Coarse-grained alignment. Since the length of the received
audio signal may exceed that of the emitted ultrasonic signal,
we first perform coarse-grained alignment to determine the
approximate location of the embedded ultrasonic sequence.
Specifically, EchoFence constructs a template waveform of the
complete ultrasonic sequence based on the known credential.
Cross-correlation is then applied between the recorded audio
signal and the template, with the highest peak in the correlation
curve indicating the coarse starting point of the ultrasonic
sequence. Using this offset, we extract M units from the audio
signal, each slightly longer than the nominal unit duration to
account for possible temporal misalignment.
Fine-grained matching. For the i-th unit, EchoFence refers
to the known credential random[i] and generates a chirp
template with corresponding end frequency. A high-resolution
correlation is performed to compare each unit with its expected
template, and the following three metrics are employed:

o Peak-to-Noise Ratio (PNR) measures peak prominence
over background fluctuations:

PNR = 2 3)
ag



where p is the correlation peak amplitude, and o is the
standard deviation of off-peak noise.

o Peak-to-Mean Ratio (PMR) reflects peak dominance over
the average correlation baseline:

PMR = 2 4)
I

where p is the average value of the correlation curve.
o Peak Interval Error (PIE) measures the deviation of the
detected peak intervals from the expected chirp duration:
|At — Tc|

T,

where At denotes the time interval between two adjacent

correlation peaks, and 7. is the nominal chirp period.

PIE = )

A unit is considered a match with the authentic template if
these three metrics pass corresponding thresholds for at least
90% peaks. The session passes only if all M units are matched.
In real-time video conferencing, the credential is randomly
generated and embedded into the ultrasonic signals during the
live session, making it impractical for attackers to accurately
predict the ultrasound sequences. Any attempt to inject forged
ultrasonic patterns—whether by replaying past signals or pre-
synthesizing new ones—fails to pass this randomness-based
credential verification. Additionally, cases where the ultrasonic
signal is absent (i.e. in blind forgery attacks) can be easily
detected and rejected at this stage without proceeding to sub-
sequent phases. As a result, this approach serves as a reliable
gatekeeper for subsequent cross-modal coherence validation.

V. CROSS-MODAL MOTION CONSISTENCY VERIFICATION

After passing the replay detection, EchoFence proceeds
with further security verification by extracting shared in-
formation from both the audio and video streams. During
video conferencing, human motion in front of the screen is
captured by video frames, while the corresponding acoustic
reflections inherently encode the same dynamic behavior. This
observation motivates us to extract motion features from both
modalities and perform cross-modal consistency analysis.

A. Motion Features in Audio Stream

Since the ultrasonic signal employs FMCW technology,
which enables accurate channel estimation, we leverage
it—rather than audible components—to extract dynamic mo-
tion information for verification purposes.

Specifically, during each verification session, EchoFence
transmits ultrasonic chirps that reflect off the surrounding en-
vironment and are subsequently captured by the microphone.
Each received chirp can be modeled as:

T(t) = S(t) * h(t), te [07 Tchirp] (6)

where s(t) denotes the transmitted chirp signal and h(¢) repre-
sents the Channel Impulse Response (CIR), which character-
izes multipath reflections with varying delays and amplitudes.
These reflection patterns are highly sensitive to facial and
upper-body movements, thereby providing a motion-dependent
acoustic signature.
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Fig. 4: Visualization of ultrasound CIR and DiffCIR for a user
uttering the word “zero”.

To recover CIR, we first apply a high-pass filter to sup-
press audible-band interference. Channel estimation is then
performed through signal mixing and Fast Fourier Transform
(FFT). The estimated CIR is discretized into a fixed number
of range bins, yielding a 1D profile h(d) for each chirp. The
distance resolution of the chirp is given by:

(&

where c is the speed of sound and B is the chirp bandwidth.
By stacking the CIRs of successive chirps, we construct a CIR
matrix Cy(d), where ¢ indexes the chirp frame and d denotes
the physical distance.

To focus on motion-induced changes, we compute the
frame-wise difference between consecutive CIRs, forming the
differential CIR (DiffCIR) AC}(d). We retain only the portion
within a selected distance range (e.g., 50 cm), ensuring that the
magnitude of the DiffCIR is primarily determined by user’s
upper-body motion. Fig. 4 illustrates the CIR and DiffCIR
extracted from ultrasonic signals as a user uttering “zero”.

As described in Section IV, we employ chirps with varying
end frequencies, which results in different distance resolutions
in the DiffCIR according to (7). To obtain a temporally
compact representation, we aggregate the DiffCIR magnitude
across all selected distance bins at each time frame:

ES =S TIACKd), B = [EQL.ED,.... L] ®
d

This produces an audio-domain motion energy sequence
E.a € RT, which captures the cumulative changes in
backscattered energy, effectively reflecting the intensity of user
movement over time.

B. Motion Features in Video Frames

To extract motion features from video frames, an intuitive
approach might be to apply facial landmark detection (e.g.,
68-point facial alignment) and compute the displacement of
landmarks between consecutive frames. While straightforward,
this method has several limitations: 1) it captures only coarse
motion at predefined anchor points, thereby missing subtle
and non-rigid movements (e.g., in the cheeks or neck); and
2) its accuracy degrades significantly under pose variations,
occlusions, or lighting changes, leading to instability in the
extracted motion features.



To address the above limitations, we adopt optical flow
for dense motion estimation, which computes per-pixel dis-
placements between consecutive frames by analyzing temporal
changes in pixel intensity. This approach enables the capture
of subtle and non-rigid facial and upper-body movements with
improved spatial coverage and robustness. Given two consecu-
tive video frames I; and I;,, we employ the pretrained RAFT
model [18] to compute a dense optical flow field:

Fi(mvy) = (ut(x,y),vt(;v,y)) )]

where (u,v:) denotes horizontal and vertical displacement.
To quantify instantaneous motion strength, we compute the
motion magnitude map as:

My(x,y) = \Jud(z.y) + v} (z.y)

This motion field provides a high-resolution, dense representa-
tion of all observable movements, overcoming the sparsity and
instability issues associated with landmark-based methods.

To ensure that the extracted motion features reflect user
activity rather than irrelevant background motion or compres-
sion artifacts, we apply spatial masking to isolate the user
region. Specifically, a binary mask B(z, y) is generated using a
pretrained Mask R-CNN [19] to segment the prominent human
subject from the background. The refined motion magnitude
map is then given by:

(10)

My(z,y) = My(z,y) - B(z,y) (11)

This masking operation effectively removes background dis-
turbances , ensuring that the extracted motion features better
correspond to genuine user dynamics, as illustrated in Fig. 5.
To align the visual motion features structurally with those
derived from the audio modality, we extract a scalar-valued
motion energy per frame from motion magnitude maps. This
is achieved by spatially aggregating the masked motion field:
B =3 NMy(z,y), Ewa=[ES)ED... BT (12)
zy
This temporal energy sequence Eyiq serves as a compact
representation of visual motion and facilitates subsequent
matching with audio-based features.

C. Consistency Verification

So far, we have obtained two temporal sequences, E,,q and
E.i4, which represent motion energy derived from ultrasonic
responses and visual frames, respectively. This scalar-level
aggregation enhances robustness by mitigating the impact
of factors commonly encountered in real-world deployment
scenarios, including sensor-view misalignment, spatially lo-
calized noise, and device-dependent variability. In genuine,
unmanipulated videos, these sequences are expected to exhibit
strong temporal alignment, as shown in Fig. 6, since they are
governed by the same underlying physical motion.

Instead of relying on a learning-based model that requires
extensive supervision, we propose a lightweight and inter-
pretable validation module based on classical signal processing

Fig. 5: Visualization of consecutive video frames and corre-
sponding motion magnitude maps from a user uttering “zero”.
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Fig. 6: Visualization of motion energy features extracted from
ultrasonic responses and visual frames.

principles. This approach is computationally efficient and well-
suited for resource-constrained devices.

To assess the coherence between dual-modal motion fea-
tures, we first normalize both sequences and apply a Savitzky-
Golay filter to suppress high-frequency noise while preserving
global motion trends. Then we employ a sliding-window
strategy to locally evaluate temporal alignment. Specifically,
each session is divided into overlapping windows of fixed
length L, with stride s. For each window, we compute the full
cross-correlation between audio and visual energy sequences:

corr(r) =Y EY, - EUIT

t

13)

where 7 denotes the lag index.

Two key metrics are extracted to quantify alignment quality:

o Best Lag (7%): The temporal offset that yields the highest

correlation value.

o Peak-to-Noise Ratio (PNR): A measure of alignment

clarity, as defined in (3).
A window is considered matched if both 7* and PNR exceed
empirically determined thresholds. If the number of matched
windows surpasses a predefined fraction of the total, the entire
session is classified as motion-consistent.

This validation process offers a robust and low-complexity
method to assess video authenticity by measuring cross-modal
motion coherence, while remaining tolerant to transient noise
and minor temporal misalignment.

VI. EVALUATION

This section presents a comprehensive evaluation of
EchoFence through real-world experiments, demonstrating its
effectiveness and robustness in practical scenarios. All the



experiments are conducted with approval from the Institutional
Review Board (IRB).

A. Experimental Setup

Platform. We implement EchoFence on a commercial off-the-
shelf laptop (HUAWEI MateBook X Pro [20]) equipped with
built-in speakers, microphones, and a camera. To simulate real-
time video conferencing scenarios, we simultaneously record
audio-visual streams using OBS Studio [21]. The video frame
rate is set to 20 FPS, and the audio sampling rate is 48 kHz.
Each symbol in the randomized credential is mapped to a chirp
unit consisting of 20 chirps, with each chirp lasting 0.05s.
Data Collection. We recruit five volunteers (two males and
three females) and collect benign sessions totaling more than
12 hours, with each session lasting approximately 100 seconds.
In each benign session, the volunteer sits naturally in front of
the laptop and performs spontaneous actions such as speaking,
nodding, or shaking their head, mimicking a typical online
conversation. During recording, the laptop emits modulated
ultrasonic signals embedded with credentials and simultane-
ously captures synchronized audio and video.

To simulate attacks, we construct samples corresponding to
the three attack types defined in the threat model using the
following methods:

o Blind Forgery Attack: In this case, the attacker employs
forged videos that lack ultrasonic responses. Accordingly,
we utilize recorded videos without embedded ultrasound,
as well as synthetic videos generated using a face-
swapping technique [22].

o Hybrid Forgery Attack: For this case, we combine forged
videos (including synthetic and pre-recorded ones) with
live-recorded ultrasonic responses. The video contains
another person rather than the attacker behind the screen.

o Full Replay Attack: In this case, we reuse previously
recorded benign samples, including ultrasonic responses.

Performance Metrics. To quantify the system’s performance
toward different cases, we compute the recognition accuracy
individually for each case as follows:

NCOITCCt

N

where Nioreer denotes the number of correctly recognized
samples (accepted in benign cases and rejected in attack
cases), and NN, represents the total number of test samples
for that specific case.

Accuracy = (14)

B. Overall Performance

We evaluate the overall performance of EchoFence on the
laptop across benign cases and three attack cases. In the default
setting, the user sits 25 cm away from the device.

To establish a comparative baseline, we benchmark
EchoFence against both a representative detection approach
MesoNet [4] and a state-of-the-art method SONICUMOS [15]:

o MesoNet is visual-only deep learning model designed for
detecting facial video forgeries.

I MesoNet 0 SONICUMOS B EchoFence
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Fig. 7: Overall performance of EchoFence compared to two
baselines: MesoNet and SONICUMOS.

¢ SONICUMOS is a liveness detection system that also
utilizes ultrasonic chirps to probe user motion; however,
it requires users to respond to prompted action challenges,
imposing explicit constraints in a natural conversation.

In SONICUMOS, the original method segments audio-
visual samples according to distinguished motion intervals.
This approach is effective in its original setting, where only
three action types are considered and users perform them
on demand. However, it struggles in our non-intrusive, un-
constrained scenario. Therefore, we adapt SONICUMOS by
removing its motion segmentation module while retaining its
feature extraction process and feature fusion network.

The performance of EchoFence and the two baseline meth-
ods is presented in Fig. 7. Since MesoNet relies solely on
visual frames, it performs poorly in our setting, which includes
replay-based forgeries. Although it appears to reject 90% of
full replay samples, the high false rejection rate for benign
cases highlights its limitations. SONICUMOS demonstrates
high accuracy in detecting blind forgery and full replay attacks
by leveraging randomized ultrasound. However, its effective-
ness declines against hybrid forgery attacks. This is due to
its original design for constrained user actions and reliance
on specific facial landmarks, which proves inadequate in our
non-intrusive scenario involving diverse subtle motions.

In contrast, EchoFence consistently achieves over 94%
recognition accuracy across both benign and attack cases,
outperforming both baselines. Notably, all samples from
blind forgery and full replay attacks are successfully rejected
through randomized credential validation alone, without re-
quiring additional cross-modal verification.

C. Robustness Study

To evaluate the robustness of EchoFence under real-world
variability, we assess its performance across different con-
ditions, including changes in chirp frequency band, user-to-
device distance, physical disturbances, and video resolution.
Since blind forgery attacks contain no ultrasonic signals and
are consistently rejected regardless of these factors, we exclude
this case from the following analysis.

a) Impact of Chirp Frequency Band: As introduced in
Section IV, we adopt three different frequency bands for
credential embedding: 18-21kHz, 18-22kHz, and 18-23 kHz.



[ 18-21kHz N 18-22kHz

B 18-23kHz
100

901

801

Accuracy (%)

70¢

60

Benign Hybrid Forgery Full Replay

Fig. 8: Performance under different chirp frequency bands.
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Fig. 9: Performance across different user-to-device distances.

The choice of frequency band can influence the resolution of
ultrasonic sensing and the stability of signal transmission, both
of which may affect detection performance. To assess this
impact, we conduct controlled experiments using each fixed
frequency band and evaluate the resulting detection accuracy.

As shown in Fig. 8, EchoFence maintains over 88% accu-
racy across all three frequency configurations, indicating that
each is suitable for randomness-based modulation to ensure
replay resistance. Among them, the 18—-22kHz band provides
the most reliable performance, achieving a low false rejection
rate of 2%. This may be because it strikes an optimal balance
between sensing resolution and hardware capability: narrower
bands reduce resolution, while wider bands may exceed the
effective operating range of typical speakers and microphones,
causing signal distortion and instability.

b) Impact of User-to-Device Distance: EchoFence per-
forms verification using ultrasonic signals, which naturally
attenuate as the distance between the user and the device
increases. To evaluate this effect, we assess the system’s
performance at varying user-to-device distances, ranging from
25cm to 35cm.

As shown in Fig. 9, EchoFence maintains reliable perfor-
mance across this range, achieving over 90% accuracy even
at 35 cm. These results suggest that EchoFence is well-suited
for typical video call scenarios, where the user is positioned
within arm’s length of the device.

c) Impact of Physical Disturbances: Since our method
estimates motion from both acoustic and visual streams,
physical disturbances may affect the system’s robustness.
We evaluate EchoFence’s performance under two types of
common disturbances:

o Hand gestures: In addition to head movements, users
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Fig. 11: Performance under different video resolutions.

perform various hand gestures, such as spreading or

waving their hands. These actions can influence both

ultrasonic and visual signals.

o Passerby movement: Another person walks behind the
user during the video session, introducing potential noise
into both modalities.

As shown in Fig. 10, EchoFence maintains acceptable
performance under both disturbance types. For hand gestures,
since EchoFence captures human body motion rather than
focusing solely on the head, it can still track consistent motion
patterns across both ultrasonic responses and visual frames. In
the case of passerby movement, EchoFence mitigates interfer-
ence by limiting the DiffCIR extraction range and masking the
optical flow of the nearest foreground individual. These strate-
gies ensure that common, unintended physical disturbances do
not significantly compromise recognition accuracy.

d) Impact of Video Resolution: Given the variability of
video quality in real-world video conferencing, we evalu-
ate EchoFence under four different video resolutions: 720P
(1280x720), 480P (640x480), 360P (480%360), and 240P
(320x240). As shown in Fig. 11, EchoFence maintains an
accuracy of 93% even at 240P. These results suggest that
EchoFence can reliably extract motion patterns from low-
resolution frames, demonstrating its robustness in resource-
constrained scenarios.

D. Device Scalability

EchoFence is designed to be hardware-agnostic, relying
solely on off-the-shelf microphones, speakers, and cameras,
without requiring device-specific training. This makes it in-
herently portable across a wide range of consumer devices.

To examine the device scalability, we implement an Android
application to emit randomized ultrasonic chirps while record-
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ing video and audio. We deploy it on a commodity smartphone
(Samsung Galaxy AS53 [23]) and collect session samples.

When using the same metric thresholds as in the laptop
setting, EchoFence achieves 98% accuracy on forged samples
and exhibits a lower true acceptance rate of 74% for benign
ones, as shown in Fig. 12. Further analysis reveals that this
drop primarily stems from audio-visual synchronization issues
in our Android implementation. To mitigate this, we relax the
acceptable range of the best cross-correlation lag 7* by 500 ms
in the cross-modal matching stage, which raises the benign
acceptance rate to 86% while not compromising the forgery
rejection rate. This suggests that EchoFence has potential for
cross-device deployment, with only minor threshold calibra-
tion or synchronization compensation needed.

VII. DISCUSSION

We now discuss EchoFence’s deployment consideration.
EchoFence currently assumes that users are on video confer-
encing with built-in speakers and microphones enabled. We
now consider a common alternative audio setting: users may
choose to use earphones or headsets for privacy or improved
audio quality. In such cases, ultrasonic signals emitted from the
earphones may not effectively propagate into the environment.

Fortunately, modern devices support simultaneous use of
built-in speakers and earphones. This allows EchoFence to
emit imperceptible ultrasonic chirps through the speakers
while routing audible audio through the earphones. We val-
idate this setup on a commodity laptop using audio routing
software (e.g., VoiceMeeter [24]), confirming that EchoFence
can remain effective in earphone settings without disrupting
the user experience.

The EchoFence pipeline operates entirely on the local
device, and thus factors related to network transmission do
not directly affect the proposed detection mechanism. Looking
ahead, we envision collaborating with video conferencing
platforms to integrate EchoFence as a background verification
module, ensuring robust forgery detection across diverse real-
world scenarios.

VIII. RELATED WORK

A. Video Forgery Detection

Existing video forgery detection approaches can be broadly
categorized into passive and active ones. Passive methods ana-

lyze naturally captured content to detect manipulation. Visual-
only approaches detect spatio-temporal artifacts [7], [8], [25],
frequency-domain anomalies [5], [6], [26], and inconsistencies
in facial features [3], [4], [27], [28]. Others leverage multi-
modal cues, such as lip-audio synchronization [9], [10]. While
effective in controlled settings, these methods mainly target
synthetic artifacts and may fail against replay attacks.

Active methods enhance robustness by introducing con-
trolled prompts or engineered stimuli. Some prompt users to
perform specific actions, verifying liveness via audio-visual
streams or sensor feedback [13]-[15]. Others exploit corneal
or facial reflections by projecting dynamic screen patterns [16],
[171, [29]. While effective, such techniques often require user
cooperation or introduce visual distractions, reducing their
practicality in video conferencing. EchoFence falls under the
category of active detection, but distinguishes itself through
its non-intrusive design and seamless integration into video
conferencing platforms.

B. Ultrasound-Based Sensing

Ultrasound has been widely adopted in human sensing tasks
due to its fine-grained motion sensitivity and compatibility
with commodity hardware. Prior works have utilized ultra-
sonic signals for gesture recognition [30]-[34], respiration
monitoring [35], [36], and face or lip tracking [37]-[41].
These efforts have demonstrated the sensing potential of
ultrasound in benign scenarios. However, they primarily aim to
extract accurate motion features under varying environmental
conditions, not considering adversarial scenarios where the
signals may be forged or replayed. In contrast, our work
extends ultrasound from a sensing modality to a verification
mechanism, leveraging signal randomization and cross-modal
motion consistency to detect tampering and resist spoofing.

IX. CONCLUSION

We present EchoFence, a novel non-intrusive forgery de-
tection framework tailored for video conferencing, which is
practical for seamless integration into existing platforms. By
embedding random credentials into ultrasonic signals and
verifying cross-modal motion consistency between the ul-
trasonic responses and visual frames, EchoFence effectively
distinguishes authentic live videos from replay-based or syn-
thetic forgeries. Our design is fully compatible with off-
the-shelf hardware and does not disrupt user experience or
communication quality. Extensive evaluations demonstrate its
effectiveness and robustness across various scenarios.
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